73
Views
5
CrossRef citations to date
0
Altmetric
Articles

Taguchi’s experimental design for the optimization of the defluoridation process using a novel biosorbent developed from the clamshell waste

&
Pages 2013-2022 | Received 28 Dec 2021, Accepted 17 Mar 2022, Published online: 31 Mar 2022

References

  • Huang, Y.; Wang, X.; Xu, Y.; Feng, S.; Liu, J.; Wang, H. Green Chemical Engineering Amino-Functionalized Porous PDVB with High Adsorption and Regeneration Performance for Fluoride Removal from Water. Green Chem. Eng. 2021, 2, )224–229. DOI: 10.1016/j.gce.2020.11.011.
  • Yadav, K. K.; Kumar, S.; Pham, Q. B.; Gupta, N.; Rezania, S.; Kamyab, H.; Yadav, S.; Vymazal, J.; Kumar, V.; Tri, D. Q.; et al. Fluoride Contamination, Health Problems and Remediation Methods in Asian Groundwater: A Comprehensive Review. Ecotoxicol. Environ. Saf. 2019, 182, 109362. DOI: 10.1016/j.ecoenv.2019.06.045.
  • Tefera, N.; Mulualem, Y.; Fito, J. Adsorption of Fluoride from Aqueous Solution and Groundwater onto Activated Carbon of Avocado Seeds. Water Conserv. Sci. Eng. 2020, 5, 187–197. DOI: 10.1007/s41101-020-00093-7.
  • Tsuchiya, K.; Fuchida, S.; Tokoro, C. Journal of Environmental Chemical Engineering Experimental Study and Surface Complexation Modeling of Fluoride Removal by Magnesium Hydroxide in Adsorption and Coprecipitation Processes. J. Environ. Chem. Eng. 2020, 8, 104514. DOI: 10.1016/j.jece.2020.104514.
  • Rosales, M.; Coreño, O.; Nava, J. L. Removal of Hydrated Silica, Fluoride and Arsenic from Groundwater by Electrocoagulation Using a Continuous Reactor with a Twelve-Cell Stack, ECSN. Chemosphere 2018, 211, 149–155. DOI: 10.1016/j.chemosphere.2018.07.113.
  • Li, C.; Chen, N.; Zhao, Y.; Li, R.; Feng, C. Polypyrrole-Grafted Peanut Shell Biological Carbon as a Potential Sorbent for Fluoride Removal: Sorption Capability and Mechanism. Chemosphere 2016, 163, 81–89. DOI: 10.1016/j.chemosphere.2016.08.016.
  • Fatehizadeh, A.; Amin, M. M.; Sillanpää, M.; Hatami, N.; Taheri, E.; Baghaei, N.; Mahajan, S. Modeling of Fluoride Rejection from Aqueous Solution by Nanofiltration Process: Single and Binary Solution. DWT 2020, 193, 224–234. DOI: 10.5004/dwt.2020.25831.
  • Sharma, S.; Upadhyay, D.; Singh, B.; Shrivastava, D.; Kulshreshtha, N. M. Defluoridation of Water Using Autochthonous Bacterial Isolates. Environ. Monit. Assess. 2019, 191, 781. DOI: 10.1007/s10661-019-7928-8.
  • Mukherjee, S.; Yadav, V.; Mondal, M.; Banerjee, S.; Halder, G. Characterization of a Fluoride-Resistant Bacterium Acinetobacter sp. RH5 towards Assessment of Its Water Defluoridation Capability. Appl. Water Sci. 2017, 7, 1923–1930. DOI: 10.1007/s13201-015-0370-3.
  • Shanker, A. S.; Srinivasulu, D.; Pindi, P. K. A Study on Bioremediation of Fluoride-Contaminated Water via a Novel Bacterium Acinetobacter sp. (GU566361) Isolated from Potable Water. Results Chem. 2020, 2, 100070. DOI: 10.1016/j.rechem.2020.100070.
  • Khandare, R. V.; Desai, S. B.; Bhujbal, S. S.; Watharkar, A. D.; Biradar, S. P.; Pawar, P. K.; Govindwar, S. P. Phytoremediation of Fluoride with Garden Ornamentals Nerium Oleander, Portulaca Oleracea, and Pogonatherum crinitum. Environ. Sci. Pollut. Res. Int. 2017, 24, 6833–6839. DOI: 10.1007/s11356-017-8424-8.
  • Singh, T. P.; Majumder, C. B. Comparison of Properties of Defluoridation of ipomoea aquatica and Eichhornia Crassipes by Means of Phytoremediation. J. Hazardous. Toxic. Radioact. Waste 2018, 22, 4017020. DOI: 10.1061/(asce)hz.2153-5515.0000371.
  • Awual, R.; Hasan, M. A Ligand Based Innovative Composite Material for Selective Lead (II) Capturing from Wastewater. J. Mol. Liq. 2019, 294, 111679. DOI: 10.1016/j.molliq.2019.111679.
  • Mukherjee, S.; Kamila, B.; Paul, S.; Hazra, B.; Chowdhury, S.; Halder, G. Optimizing Fluoride Uptake Influencing Parameters of Paper Industry Waste Derived Activated Carbon. Microchem. J. 2021, 160, 105643. DOI: 10.1016/j.microc.2020.105643.
  • Yen, H. Y.; Li, J. Y. Process Optimization for Ni(II) Removal from Wastewater by Calcined Oyster Shell Powders Using Taguchi Method. J Environ Manage. 2015, 161, 344–349. DOI: 10.1016/j.jenvman.2015.07.024.
  • Jović, M.; Mandić, M.; Šljivić-Ivanović, M.; Smičiklas, I. Recent Trends in Application of Shell Waste from Mariculture. Stud. Mar. 2019, 32, 47–62. DOI: 10.5281/zenodo.3274471.
  • Tham, T.; Ngoc, T.; Thi, N.; Shigeru, T.; Jhy, S.; Liu, C. Enhanced Phosphate Removal by Thermally Pretreated Waste Oyster Shells. J Mater Cycles Waste Manag. 2021, 23, 177–185. DOI: 10.1007/s10163-020-01112-4.
  • Okolo, B. I.; Oke, E. O.; Agu, C. M.; Adeyi, O.; Nwoso-Obieogu, K.; Akatobi, K. N. Adsorption of Lead(II) from Aqueous Solution Using Africa Elemi Seed, Mucuna Shell and Oyster Shell as Adsorbents and Optimization Using Box–Behnken Design. Appl. Water Sci. 2020, 10, 1–23. DOI: 10.1007/s13201-020-01242-y.
  • Chang, H. Y. H.; Kuo, Y.; Liu, J. C. Science of the Total Environment Fluoride at Waste Oyster Shell Surfaces – Role of Magnesium. Sci. Total Environ. 2019, 652, 1331–1338. DOI: 10.1016/j.scitotenv.2018.10.238.
  • Lee, J. I.; Kang, J. K.; Hong, S. H.; Lee, C. G.; Jeong, S.; Park, S. J. Thermally Treated Mytilus Coruscus Shells for Fluoride Removal and Their Adsorption Mechanism. Chemosphere 2021, 263, 128328. DOI: 10.1016/j.chemosphere.2020.128328.
  • Panagiotou, E.; Kafa, N.; Koutsokeras, L.; Kouis, P.; Nikolaou, P.; Constantinides, G.; Vyrides, I. Turning Calcined Waste Egg Shells and Wastewater to Brushite: Phosphorus Adsorption from Aqua Media and Anaerobic Sludge Leach Water. J. Clean. Prod. 2018, 178, 419–428. DOI: 10.1016/j.jclepro.2018.01.014.
  • Egbosiuba, T. C.; Abdulkareem, A. S.; Tijani, J. O.; Ani, J. I.; Krikstolaityte, V.; Srinivasan, M.; Veksha, A.; Lisak, G. Taguchi Optimization Design of Diameter-Controlled Synthesis of Multi Walled Carbon Nanotubes for the Adsorption of Pb(II) and Ni(II) from Chemical Industry Wastewater. Chemosphere 2021, 266, 128937. DOI: 10.1016/j.chemosphere.2020.128937.
  • Razmi, B.; Ghasemi-Fasaei, R.; Ronaghi, A.; Mostowfizadeh-Ghalamfarsa, R. Investigation of Factors Affecting Phytoremediation of Multi-Elements Polluted Calcareous Soil Using Taguchi Optimization. Ecotoxicol. Environ. Saf. 2021, 207, 111315. DOI: 10.1016/j.ecoenv.2020.111315.
  • Ngwabebhoh, F. A.; Mammadli, N.; Yildiz, U. Bioinspired Modified Nanocellulose Adsorbent for Enhanced Boron Recovery from Aqueous Media: Optimization, Kinetics, Thermodynamics and Reusability Study. J. Environ. Chem. Eng. 2019, 7, 103281. DOI: 10.1016/j.jece.2019.103281.
  • Ismail, W. M. Z. W.; Ng, Y. S.; Mukherjee, S.; Kundu, A.; Mukhopadhyay, S.; Sen Gupta, B.; Hashim, M. A.; Yusoff, I. Application of Taguchi Method for the Optimization of Fe2+ Removal from Contaminated Synthetic Groundwater Using a Rotating Packed Bed Contactor. Water Environ. J. 2020, 34, 57–65. DOI: 10.1111/wej.12441.
  • Mondal, P.; Purkait, M. K. Preparation and Characterization of Novel Green Synthesized Iron-Aluminum Nanocomposite and Studying Its Efficiency in Fluoride Removal. Chemosphere 2019, 235, 391–402. DOI: 10.1016/j.chemosphere.2019.06.189.
  • Bhaumik, R.; Mondal, N. K. Adsorption of Fluoride from Aqueous Solution by a New Low-Cost Adsorbent: Thermally and Chemically Activated Coconut Fibre Dust. Clean Techn. Environ. Policy 2015, 17, 2157–2172. DOI: 10.1007/s10098-015-0937-6.
  • Pandi, K.; Viswanathan, N.; Meenakshi, S. Hydrothermal Synthesis of Magnetic Iron Oxide Encrusted Hydrocalumite-Chitosan Composite for Defluoridation Studies. Int. J. Biol. Macromol. 2019, 132, 600–605. DOI: 10.1016/j.ijbiomac.2019.03.115.
  • Samant, A.; Nayak, B.; Misra, P. K. Kinetics and Mechanistic Interpretation of Fluoride Removal by Nanocrystalline Hydroxyapatite Derived from Limacine Artica Shells. J. Environ. Chem. Eng. 2017, 5, 5429–5438. DOI: 10.1016/j.jece.2017.09.058.
  • Jena, S. P.; Mahapatra, S.; Acharya, S. K. Materials Today : Proceedings Optimization of Performance and Emission Characteristics of a Diesel Engine Fueled with Karanja Biodiesel Using Grey-Taguchi Method. Mater. Today Proc. 2020, 41, 180–185. DOI: 10.1016/j.matpr.2020.08.579.
  • Kundu, A.; Sen Gupta, B.; Hashim, M. A.; Redzwan, G. Taguchi Optimization Approach for Production of Activated Carbon from Phosphoric Acid Impregnated Palm Kernel Shell by Microwave Heating. J. Clean. Prod. 2015, 105, 420–427. DOI: 10.1016/j.jclepro.2014.06.093.
  • Nehra, S.; Raghav, S.; Kumar, D. Biomaterial Functionalized Cerium Nanocomposite for Removal of Fluoride Using Central Composite Design Optimization Study. Environ. Pollut. 2020, 258, ) 113773. DOI: 10.1016/j.envpol.2019.113773.
  • Nagaraj, A.; Pillay, K.; Kishor Kumar, S.; Rajan, M. Dicarboxylic Acid Cross-Linked Metal Ion Decorated Bentonite Clay and Chitosan for Fluoride Removal. RSC Adv. 2020, 10, ) 16791–16803. DOI: 10.1039/D0RA00598C.
  • Mohammadi, E.; Daraei, H.; Ghanbari, R.; Dehestani Athar, S.; Zandsalimi, Y.; Ziaee, A.; Maleki, A.; Yetilmezsoy, K. Synthesis of Carboxylated Chitosan Modified with Ferromagnetic Nanoparticles for Adsorptive Removal of Fluoride, Nitrate, and Phosphate Anions from Aqueous Solutions. J. Mol. Liq. 2019, 273, 116–124. DOI: 10.1016/j.molliq.2018.10.019.
  • Issabayeva, G.; Wong, S. H.; Pang, C. Y.; Wong, M. C.; Aroua, M. K. Fluoride Removal by Low-Cost Palm Shell Activated Carbon Modified with Prawn Shell Chitosan Adsorbents. Int. J. Environ. Sci. Technol. 2021. DOI: 10.1007/s13762-021-03448-2.
  • Sobeih, M. M.; El-Shahat, M. F.; Osman, A.; Zaid, M. A.; Nassar, M. Y. Glauconite Clay-Functionalized Chitosan Nanocomposites for Efficient Adsorptive Removal of Fluoride Ions from Polluted Aqueous Solutions. RSC Adv. 2020, 10, 25567–25585. DOI: 10.1039/D0RA02340J.
  • Pongener, C.; Bhomick, P. C.; Supong, A.; Baruah, M.; Sinha, U. B.; Sinha, D. Adsorption of Fluoride onto Activated Carbon Synthesized from Manihot Esculenta biomass - Equilibrium, Kinetic and Thermodynamic Studies. J. Environ. Chem. Eng. 2018, 6, 2382–2389. DOI: 10.1016/j.jece.2018.02.045.
  • De, D.; Santosha, S.; Aniya, V.; Sreeramoju, A. B. S. Assessing the Applicability of an Agro-Industrial Waste to Engineered Bio-Char as a Dynamic Adsorbent for Fluoride Sorption. J. Environ. Chem. Eng. 2018, 6, 2998–3009. DOI: 10.1016/j.jece.2018.04.021.
  • Naga Babu, A.; Reddy, D. S.; Kumar, G. S.; Ravindhranath, K.; Krishna Mohan, G. V. Removal of Lead and Fluoride from Contaminated Water Using Exhausted Coffee Grounds Based Bio-Sorbent. J. Environ. Manage. 2018, 218, 602–612. DOI: 10.1016/j.jenvman.2018.04.091.
  • Mesbah, M.; Hamedshahraki, S.; Adaobi, C. Hydrothermal Synthesis of LaFeO 3 Nanoparticles Adsorbent: Characterization and Application of Error Functions for Adsorption of Fluoride. MethodsX 2020, 7, 100786. DOI: 10.1016/j.mex.2020.100786.
  • Saghi, M. H.; Qasemi, M.; Mohammadi, A. A.; Kowsari, M. H.; Shams, M. Fluoride Removal from Aqueous Solution by Municipal Solid Waste Compost Ash: Kinetics, and Isotherms Studies. Int. J. Environ. Anal. Chem. 2020, 2020, 1–13. DOI: 10.1080/03067319.2020.1761349.
  • Mei, L.; Qiao, H.; Ke, F.; Peng, C.; Hou, R.; Wan, X.; Cai, H. One-Step Synthesis of Zirconium Dioxide-Biochar Derived from Camellia Oleifera Seed Shell with Enhanced Removal Capacity for Fluoride from Water. Appl. Surf. Sci. 2020, 509, 144685. DOI: 10.1016/j.apsusc.2019.144685.
  • Ammavasi, N.; Mariappan, R. Enhanced Removal of Hazardous Fluoride from Drinking Water by Using a Smart Material: Magnetic Iron Oxide Fabricated Layered Double Hydroxide/Cellulose Composite. J. Environ. Chem. Eng. 2018, 6, 5645–5654. DOI: 10.1016/j.jece.2018.08.071.
  • Asgari, G.; Dayari, A.; Ghasemi, M.; Seid-mohammadi, A.; Gupta, V. K.; Agarwal, S. Efficient Fluoride Removal by Preparation, Characterization of Pyrolysis Bone: Mixed Level Design Experiment and Taguchi L8 Orthogonal Array Optimization. J. Mol. Liq. 2019, 275, 251–264. DOI: 10.1016/j.molliq.2018.10.137.
  • Zúñiga-Muro, N. M.; Bonilla-Petriciolet, A.; Mendoza-Castillo, D. I.; Reynel-Ávila, H. E.; Tapia-Picazo, J. C. Fluoride Adsorption Properties of Cerium-Containing Bone Char. J. Fluor. Chem. 2017, 197, 63–73. DOI: 10.1016/j.jfluchem.2017.03.004.
  • Kusrini, E.; Sofyan, N.; Suwartha, N.; Yesya, G.; Priadi, C. R. Chitosan-Praseodymium Complex for Adsorption of Fluoride Ions from Water. J. Rare Earths. 2015, 33, 1104–1113. DOI: 10.1016/S1002-0721(14)60533-0.
  • Ayinde, W. B.; Gitari, W. M.; Munkombwe, M.; Samie, A.; Smith, J. A. Green Synthesis of AgMgOnHaP Nanoparticles Supported on Chitosan Matrix: Defluoridation and Antibacterial Effects in Groundwater. J. Environ. Chem. Eng. 2020, 8, 104026. DOI: 10.1016/j.jece.2020.104026.
  • Biftu, W. K.; Ravulapalli, S.; Ravindhranath, K. Effective De-fluoridation of Water Using Leucaena luecocephala Active Carbon as Adsorbent. Int. J. Environ. Res. 2020, 14, 415–426. DOI: 10.1007/s41742-020-00268-z.
  • Amalraj, A.; Pius, A. Removal of Fluoride from Drinking Water Using Aluminum Hydroxide Coated Activated Carbon Prepared from Bark of Morinda Tinctoria. Appl Water Sci. 2017, 7, 2653–2665. DOI: 10.1007/s13201-016-0479-z.
  • Bhaumik, R.; Mondal, N. K.; Chattoraj, S. An Optimization Study for Defluoridation from Synthetic Fluoride Solution Using Scale of Indian Major Carp Catla (Catla catla): An Unconventional Biosorbent. J. Fluor. Chem. 2017, 195, 57–69. DOI: 10.1016/j.jfluchem.2017.01.015.
  • Burillo, J. C.; Ballinas, L.; Burillo, G.; Guerrero-Lestarjette, E.; Lardizabal-Gutierrez, D.; Silva-Hidalgo, H. Chitosan Hydrogel Synthesis to Remove Arsenic and Fluoride Ions from Groundwater. J Hazard Mater. 2021, 417, 126070. DOI: 10.1016/j.jhazmat.2021.126070.
  • Nigri, E. M.; Bhatnagar, A.; Rocha, S. D. F. Thermal Regeneration Process of Bone Char Used in the Fluoride Removal from Aqueous Solution. J. Clean. Prod. 2017, 142, 3558–3570. DOI: 10.1016/j.jclepro.2016.10.112.
  • Zhang, J.; Chen, N.; Su, P.; Li, M.; Feng, C. Fluoride Removal from Aqueous Solution by Zirconium-Chitosan/Graphene Oxide Membrane. React. Funct. Polym. 2017, 114, 127–135. DOI: 10.1016/j.reactfunctpolym.2017.03.008.
  • Sahoo, S. K.; Hota, G. Surface Functionalization of GO with MgO/MgFe2O4 Binary Oxides: A Novel Magnetic Nanoadsorbent for Removal of Fluoride Ions. J. Environ. Chem. Eng. 2018, 6, 2918–2931. DOI: 10.1016/j.jece.2018.04.054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.