135
Views
2
CrossRef citations to date
0
Altmetric
Articles

Low-cost adsorbent prepared from soybean hulls residues as potential alternative for cationic dyes removal

, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 2034-2044 | Received 26 Aug 2021, Accepted 24 Mar 2022, Published online: 07 Apr 2022

References

  • Samarghandi, M. R.; Zarrabi, M.; Amrane, A.; et al. Kinetic of Degradation of Two Azo Dyes from Aqueous Solutions by Zero Iron Powder: determination of the Optimal Conditions. DWT 2012, 40, 137–143. DOI: 10.1080/19443994.2012.671157.
  • Vidovix, T. B.; Quesada, H. B.; Januário, E. F. D.; Bergamasco, R.; Vieira, A. M. S. Green Synthesis of Copper Oxide Nanoparticles Using Punica Granatum Leaf Extract Applied to the Removal of Methylene Blue. Mater. Lett. 2019, 257, 126685. DOI: 10.1016/j.matlet.2019.126685.
  • Dehghani, M. H.; Mahmoodi, M.; Zarei, A. Toxicity Study of UV/ZnO Treated Solution Containing Reactive Blue 29 Using Daphnia Magna as a Biological Indicator. MethodsX 2019, 6, 660–665. DOI: 10.1016/j.mex.2019.03.019.
  • Mpatani, F. M.; Aryee, A. A.; Kani, A. N.; Guo, Q.; Dovi, E.; Qu, L.; Li, Z.; Han, R. Uptake of Micropollutant-Bisphenol A, Methylene Blue and Neutral Red onto a Novel Bagasse-β-Cyclodextrin Polymer by Adsorption Process. Chemosphere 2020, 259, 127439. DOI: 10.1016/j.chemosphere.2020.127439.
  • Vidovix, T. B.; Quesada, H. B.; Bergamasco, R.; Vieira, M. F.; Vieira, A. M. S. Adsorption of Safranin-O Dye by Copper Oxide Nanoparticles Synthesized from Punica Granatum Leaf Extract. Environ. Technol. 2021, 1–17. DOI: 10.1080/09593330.2021.1914180.
  • Moawed, E. A.; Abulkibash, A. B. Selective Separation of Light Green and Safranin O from Aqueous Solution Using Salvadora Persica (Miswak) Powder as a New Biosorbent. J. Saudi Chem. Soc. 2016, 20, S178–S185. DOI: 10.1016/j.jscs.2012.10.011.
  • Luo, P.; Zhao, Y.; Zhang, B.; Liu, J.; Yang, Y.; Liu, J. Study on the Adsorption of Neutral Red from Aqueous Solution onto Halloysite Nanotubes. Water Res. 2010, 1489–97.
  • Reck, I. M.; Baptista, A. T. A.; Paixão, R. M.; Bergamasco, R.; Vieira, M. F.; Vieira, A. M. S. Application of Magnetic Coagulant Based on Fractionated Protein of Moringa Oleifera Lam. seeds for Aqueous Solutions Treatment Containing Synthetic Dyes. Environ. Sci. Pollut. Res. 2020, 27, 12192–12110. DOI: 10.1007/s11356-020-07638-2.
  • Rashid, S.; Shen, C.; Yang, J.; et al. Preparation and Properties of Chitosan–Metal Complex: Some Factors Influencing the Adsorption Capacity for Dyes in Aqueous Solution. J. Environ. Sci. (China) 2018.
  • Diogo Januário, E. F.; de Camargo Lima Beluci, N.; Vidovix, T. B.; Vieira, M. F.; Bergamasco, R.; Salcedo Vieira, A. M. Functionalization of Membrane Surface by Layer-by-Layer Self-Assembly Method for Dyes Removal. Process Saf. Environ. Prot. 2020, 134, 140–148. DOI: 10.1016/j.psep.2019.11.030.
  • Januário, E. F. D.; Vidovix, T. B.; Beluci, N. d. C. L.; Paixão, R. M.; Silva, L. H. B. R. d.; Homem, N. C.; Bergamasco, R.; Vieira, A. M. S. Advanced Graphene Oxide-Based Membranes as a Potential Alternative for Dyes Removal: A Review. Sci. Total Environ. 2021, 789, 147957. DOI: 10.1016/j.scitotenv.2021.147957.
  • Quesada, H. B.; Baptista, A. T. A.; Cusioli, L. F.; Seibert, D.; de Oliveira Bezerra, C.; Bergamasco, R. Surface Water Pollution by Pharmaceuticals and an Alternative of Removal by Low-Cost Adsorbents: A Review. Chemosphere 2019, 222, 766–780. DOI: 10.1016/j.chemosphere.2019.02.009.
  • Januário, E. F. D.; Vidovix, T. B.; Bergamasco, R.; Vieira, A. M. S. Performance of a Hybrid Coagulation/Flocculation Process Followed by Modified Microfiltration Membranes for the Removal of Solophenyl Blue Dye. Chem. Eng. Process - Process Intensif 2021, 168, 108577. DOI: 10.1016/j.cep.2021.108577.
  • Januário, E. F. D.; Vidovix, T. B.; Calsavara, M. A.; et al. Membrane Surface Functionalization by the Deposition of Polyvinyl Alcohol and Graphene Oxide for Dyes Removal and Treatment of a Simulated Wastewater. Chem. Eng. Process - Process Intensif 2022.
  • Vidovix, T. B.; Freitas, E.; Januário, D. Bisfenol a Adsorption Using a Low-Cost Adsorbent Prepared from Residues of Babassu Coconut Peels. Environ. Technol. 2019, 0, 1–13.
  • Januário, E. F. D.; Fachina, Y. J.; Wernke, G.; Demiti, G. M. M.; Beltran, L. B.; Bergamasco, R.; Vieira, A. M. S. Application of Activated Carbon Functionalized with Graphene Oxide for Efficient Removal of COVID-19 Treatment-Related Pharmaceuticals from Water. ChemosphereChemosphere 2022, 289, 133213. DOI: 10.1016/j.chemosphere.2021.133213.
  • Januário, E. F. D.; Vidovix, T. B.; Castro, J. R. M. Processo de Precipitação de Chumbo Utilizando Casca de Laranja Como Biossorvente. J. Exact Sci. 2019, 21, 32–36.
  • Pourali, P.; Behzad, M.; Arfaeinia, H.; et al. Removal of Acid Blue 113 from Aqueous Solutions Using Low-Cost Adsorbent: adsorption Isotherms, Thermodynamics, Kinetics and Regeneration Studies. Sep. Sci. Technol. 2021.
  • Bugiereck, A. M.; Behling, S. M.; Mello, d.; et al. Avaliação da Capacidade Adsortiva de Carvão Ativado Quimicamente a Partir de Casca de Banana. ACTA Ambient Catarinense 2013,
  • Esmaeili, H.; Foroutan, R. Adsorptive Behavior of Methylene Blue onto Sawdust of Sour Lemon, Date Palm, and Eucalyptus as Agricultural Wastes. J. Dispers. Sci. Technol. 2019.
  • Cusioli, L. F.; Baptista, H. B. Q.; Alves, A. T.; et al. Soybean Hulls as a Low-Cost Biosorbent for Removal of Methylene Blue Contaminant. Environ. Prog. Sustain Energy 2019.
  • Vidovix, T. B.; Januário, E. F. D.; Bergamasco, R.; et al. Bisfenol a Adsorption Using a Low-Cost Adsorbent Prepared from Residues of Babassu Coconut Peels. Environ. Technol. (United Kingdom) 2019.
  • Merci, A.; Marim, R. G.; Urbano, A.; et al. Films Based on Cassava Starch Reinforced with Soybean Hulls or Microcrystalline Cellulose from Soybean Hulls. Food Packag Shelf Life 2019.
  • Ali, I.; Asim, M.; Khan, T. A. Low Cost Adsorbents for the Removal of Organic Pollutants from Wastewater. J. Environ. Manage 2012.
  • Quesada, H.; Cusioli, L. F.; O Bezerra, C.; Baptista, A.; Nishi, L.; Gomes, R.; Bergamasco, R. Acetaminophen Adsorption Using a Low-Cost Adsorbent Prepared from Modified Residues of Moringa Oleifera Lam. seed Husks. J. Chem. Technol. Biotechnol. 2019, 94, 3147–1357. DOI: 10.1002/jctb.6121.
  • Toro-Trochez, J. L.; Carrillo-Pedraza, E. S.; Bustos-Martínez, D.; et al. Thermogravimetric Characterization and Pyrolysis of Soybean Hulls. Bioresour. Technol. Reports 2019.
  • Zhao, C.; Jiang, E.; Chen, A. Volatile Production from Pyrolysis of Cellulose, Hemicellulose and Lignin. J. Energy Inst. 2017.
  • Sills, D. L.; Gossett, J. M. Using FTIR Spectroscopy to Model Alkaline Pretreatment and Enzymatic Saccharification of Six Lignocellulosic Biomasses. Biotechnol. Bioeng. 2012.
  • Lopez-Velazquez, M. A.; Santes, V.; Balmaseda, J.; et al. Pyrolysis of Orange Waste: A Thermo-Kinetic Study. J. Anal. Appl. Pyrolysis 2013.
  • Yang, H.; Yan, R.; Chen, H.; Lee, D. H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. DOI: 10.1016/j.fuel.2006.12.013.
  • Song, X-l.; Zhang, M-w.; Zhang, Y.; Huang, S-t.; Geng, B-y.; Meng, R-b.; Yang, Y-z.; Zhong, Y-s.; Liu, H-y. Surface Modification of Coconut-Based Activated Carbon by SDS and Its Effects on Pb2 + Adsorption. J. Cent. South Univ. 2013, 20, 1156–1160. DOI: 10.1007/s11771-013-1598-4.
  • Chandane, V.; Singh, V. K. Adsorption of Safranin Dye from Aqueous Solutions Using a Low-Cost Agro-Waste Material Soybean Hull. Desalin Water Treat 2016, 57, 4122–4134. DOI: 10.1080/19443994.2014.991758.
  • Subbareddy, Y.; Jayakumar, C.; Valliammai, S.; et al. Synthesis of Efficient Activated Carbon from Peltophorum Pterocarpum for the Adsorption of Safranin O and Its Investigation on Equilibrium, Kinetic, and Thermodynamic Studies. Desalin Water Treat. 2015.
  • Chen, X.; Zhang, B.; Liu, Y.; et al. Effect of Embedded Sodium Polyacrylate Chains on the Adsorption Mechanism of Neutral Red by Magnetic Particles. Chem. Eng. Res. Des. 2017.
  • Dai, Y.; Zhang, K.; Zhang, D.; et al. Kinetic and Equilibrium Studies of Neutral Red Adsorption onto Spent Ground Coffee from Aqueous Solution. J. Chem. Soc. Pakistan 2016,
  • Amaral-Labat, G.; Grishechko, L.; Szczurek, A.; Fierro, V.; Pizzi, A.; Kuznetsov, B.; Celzard, A. Highly Mesoporous Organic Aerogels Derived from Soy and Tannin. Green Chem. 2012, 14, 3099. DOI: 10.1039/c2gc36263e.
  • Zhou, T.; Wang, H.; Ji, S.; et al. Soybean-Derived Mesoporous Carbon as an Effective Catalyst Support for Electrooxidation of Methanol. J Power Sources 2014.
  • Januário, E. F. D.; Vidovix, T. B.; Araújo, LAd.; Bergamasco Beltran, L.; Bergamasco, R.; Vieira, A. M. S. Investigation of Citrus Reticulata Peels as an Efficient and Low-Cost Adsorbent for the Removal of Safranin Orange Dye. Environ Technol. 2021, 1–37. DOI: 10.1080/09593330.2021.1946601.
  • Preethi, S.; Sivasamy, A.; Sivanesan, S.; et al. Removal of Safranin Basic Dye from Aqueous Solutions by Adsorption onto Corncob Activated Carbon. Ind. Eng. Chem. Res. 2006.
  • Ma, J.; Yu, F.; Zhou, L.; Jin, L.; Yang, M.; Luan, J.; Tang, Y.; Fan, H.; Yuan, Z.; Chen, J.; et al. Enhanced Adsorptive Removal of Methyl Orange and Methylene Blue from Aqueous Solution by Alkali-Activated Multiwalled Carbon Nanotubes. ACS Appl. Mater. Interfaces 2012, 4, 5749–5760. DOI: 10.1021/am301053m.
  • Shoukat, S.; Bhatti, H. N.; Iqbal, M.; Noreen, S. Mango Stone Biocomposite Preparation and Application for Crystal Violet Adsorption: A Mechanistic Study. Microporous -Mesoporous Mater. 2017, 239, 180–189. DOI: 10.1016/j.micromeso.2016.10.004.
  • Fathy, N.; El-Khouly, S.; Ahmed, S.; et al. Superior Adsorption of Cationic Dye on Novel Bentonite/Carbon Composites. Asia-Pacific J. Chem. Eng. 2020, 1(16), 1–12.
  • Shaban, M.; Abukhadra, M.; Mohamed, A.; Shahien, M.; Ibrahim, S. Synthesis of Mesoporous Graphite Functionalized by Nitrogen for Efficient Removal of Safranin Dye Utilizing Rice Husk Ash; Equilibrium Studies and Response Surface Optimization. J. Inorg. Organomet. Polym. 2018, 28, 279–294. DOI: 10.1007/s10904-017-0726-2.
  • Ho, Y. S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Soltani, R.; Marjani, A.; Hosseini, M.; et al. Mesostructured Hollow Siliceous Spheres for Adsorption of Dyes. Chem. Eng. Technol. 2020.
  • Sharifpour, E.; Ghaedi, M.; Nasiri Azad, F.; et al. Zinc Oxide Nanorod-Loaded Activated Carbon for Ultrasound-Assisted Adsorption of Safranin O: Central Composite Design and Genetic Algorithm Optimization. Appl. Organomet. Chem. 2018.
  • Weber, W. J.; Morris, J. C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Engrg. Div. 1963, 89, 31–60. DOI: 10.1061/JSEDAI.0000430.
  • Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. J Am Chem Soc 1917.
  • Anastopoulos, I.; Kyzas, G. Z. Are the Thermodynamic Parameters Correctly Estimated in Liquid-Phase Adsorption Phenomena? J. Mol. Liq. 2016, 218, 174–185. DOI: 10.1016/j.molliq.2016.02.059.
  • Azimvand, J.; Didehban, K.; Mirshokraie, S. A. Safranin-O Removal from Aqueous Solutions Using Lignin Nanoparticle-g-Polyacrylic Acid Adsorbent: Synthesis, Properties, and Application. Adsorpt. Sci. Technol. 2018.
  • Kul, A. R.; Söğüt, E. G.; Kılıç, N. Ç. Adsorption of Neutral Red Dye from Aqueous Solutıons by Natural Adsorbent: An Equilibrium, Kinetic and Thermodynamic Study. Commun Fac Sci. Univ. Ank. Ser B. Chem. Chem. Eng. 2021, 63, 27–60. https://dergipark.org.tr/en/pub/communb/issue/64811/948429.
  • Nehaba, S. S.; Abdullah, R. H.; Oda, A. M.; Omran, A.; Mottaleb, A. Evaluation of the Efficiency of Tea Waste Powder to Remove the Safranin O Dye Compared to the Activated Carbon as Adsorbent. Orient. J. Chem. 2019, 35, 1201–1207. DOI: 10.13005/ojc/350341.
  • Zhao, X. R.; Xu, X.; Teng, J.; et al. Three-Dimensional Porous Graphene Oxide-Maize Amylopectin Composites with Controllable Pore-Sizes and Good Adsorption-Desorption Properties: Facile Fabrication and Reutilization, and the Adsorption Mechanism. Ecotoxicol. Environ. Saf. 2019.
  • Acemioğlu, B.; Bilir, M. H.; Alma, M. H. Adsorption of safranin-O Dye by Peanut Shell-Based Polyurethane Type Foam. Int. J. Chem. Technol. 2018.
  • Hussain, Z.; Fadhil, Z.; Kareem, S.; Mohammed, S.; Yousif, E. Removal of Organic Contaminants from Textile Wastewater by Adsorption on Natural Biosorbent. MSF 2020, 1002, 489–497. DOI: 10.4028/www.scientific.net/MSF.1002.489.
  • Bai, H.; Chen, J.; Zhou, X.; et al. Single and Binary Adsorption of Dyes from Aqueous Solutions Using Functionalized Microcrystalline Cellulose from Cotton Fiber. Korean J. Chem. Eng. 2020.
  • Abukhadra, M. R.; El-Meligy, M. A.; El-Sherbeeny, A. M. Evaluation and Characterization of Egyptian Ferruginous Kaolinite as Adsorbent and Heterogeneous Catalyst for Effective Removal of safranin-O Cationic Dye from Water. Arab J. Geosci. 2020, 13 (4), 169. DOI: 10.1007/s12517-020-5182-6.
  • Batool, A.; Valiyaveettil, S. Chemical Transformation of Soya Waste into Stable Adsorbent for Enhanced Removal of Methylene Blue and Neutral Red from Water. J. Environ. Chem. Eng. 2021.
  • Abukhadra, M. R.; Shaban, M. Recycling of Different Solid Wastes in Synthesis of High-Order Mesoporous Silica as Adsorbent for Safranin Dye. Int. J. Environ. Sci. Technol. 2019.
  • Iram, M.; Guo, C.; Guan, Y.; et al. Adsorption and Magnetic Removal of Neutral Red Dye from Aqueous Solution Using Fe3O4 Hollow Nanospheres. J. Hazard Mater. 2010.
  • Ajaelu, J.; Nwosu, V.; Ibironke, L.; Adeleye, A. Adsorptive Removal of Cationic Dye from Aqueous Solution Using Chemically Modified African Border Tree (Newbouldia Laevis) Bark. J. Appl. Sci. Environ. Manag. 2018, 21, 1323. DOI: 10.4314/jasem.v21i7.18.
  • Ghosh, I.; Kar, S.; Chatterjee, T.; Bar, N.; Das, S. K. Adsorptive Removal of Safranin-O Dye from Aqueous Medium Using Coconut Coir and Its Acid-Treated Forms: Adsorption Study, Scale-up Design, MPR and GA-ANN Modeling. Sustain. Chem. Pharm. 2021, 19, 100374. DOI: 10.1016/j.scp.2021.100374.
  • Zhou, Q.; Gong, W.; Xie, C.; Yang, D.; Ling, X.; Yuan, X.; Chen, S.; Liu, X. Removal of Neutral Red from Aqueous Solution by Adsorption on Spent Cottonseed Hull Substrate. J. Hazard Mater. 2011, 185, 502–506. DOI: 10.1016/j.jhazmat.2010.09.029.
  • Zhan, Y.; Yang, L.; Lan, J.; Shang, J.; Chen, S.; Guan, X.; Li, W.; Lin, S. Mussel-Inspired Polydopamine Decorated Pomelo Peel as a Durable Biosorbent for Adsorption of Cationic Dyes. Cellulose 2021, 28, 453–470. DOI: 10.1007/s10570-020-03541-8.
  • Mullerova, S.; Baldikova, E.; Prochazkova, J.; Pospiskova, K.; Safarik, I. Magnetically Modified Macroalgae Cymopolia Barbata Biomass as an Adsorbent for Safranin O Removal. Mater. Chem. Phys. 2019, 225, 174–180. DOI: 10.1016/j.matchemphys.2018.12.074.
  • Vidovix, T. B.; Januário, E. F. D.; Araújo, M. F.; Bergamasco, R.; Vieira, A. M. S. Investigation of Two New Low-Cost Adsorbents Functionalized with Magnetic Nanoparticles for the Efficient Removal of Triclosan and a Synthetic Mixture. Environ. Sci. Pollut. Res. 2022. DOI: 10.1007/s11356-022-19187-x.
  • Maderova, Z.; Baldikova, E.; Pospiskova, K.; et al. Removal of Dyes by Adsorption on Magnetically Modified Activated Sludge. Int. J. Environ. Sci. Technol. 2016.
  • Villaescusa, I.; Fiol, N.; Poch, J.; Bianchi, A.; Bazzicalupi, C. Mechanism of Paracetamol Removal by Vegetable Wastes: The Contribution of Π-Π Interactions, Hydrogen Bonding and Hydrophobic Effect. Desalination 2011, 270, 135–142. DOI: 10.1016/j.desal.2010.11.037.
  • Sahu, M. K.; Sahu, U. K.; Patel, R. K. Adsorption of safranin-O Dye on CO2 Neutralized Activated Red Mud Waste: Process Modelling, Analysis and Optimization Using Statistical Design. RSC Adv. 2015, 5, 42294–42304. DOI: 10.1039/C5RA03777H.
  • Abukhadra, M. R.; Mohamed, A. S. Adsorption Removal of Safranin Dye Contaminants from Water Using Various Types of Natural Zeolite. Silicon 2019, 11, 1635–1647. DOI: 10.1007/s12633-018-9980-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.