156
Views
0
CrossRef citations to date
0
Altmetric
Articles

Air-assisted drag reduction promoted by hydrophobic attraction

, ORCID Icon, , &
Pages 2180-2189 | Received 07 Jan 2022, Accepted 02 Apr 2022, Published online: 06 May 2022

References

  • Watanabe, K.; Udagawa, Y.; Udagawa, H. Drag Reduction of Newtonian Fluid in a Circular Pipe with a Highly Water-Repellent Wall. J. Fluid Mech. 1999, 381, 225–238. DOI: 10.1017/S0022112098003747.
  • Ou, J.; Perot, B.; Rothstein, J. P. Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces. Phys. Fluids. 2004, 16, 4635–4643. DOI: 10.1063/1.1812011.
  • Balasubramanian, A. K.; Miller, A. C.; Rediniotis, O. K. Microstructured Hydrophobic Skin for Hydrodynamic Drag Reduction. AIAA J. 2004, 42, 411–414. DOI: 10.2514/1.9104.
  • Gogte, S.; Vorobieff, P.; Truesdell, R.; Mammoli, A.; van Swol, F.; Shah, P.; Brinker, C. J. Effective Slip on Textured Superhydrophobic Surfaces. Phys. Fluids. 2005, 17, 051701. DOI: 10.1063/1.1896405.
  • Truesdell, R.; Mammoli, A.; Vorobieff, P.; van Swol, F.; Brinker, C. J. Drag Reduction on a Patterned Superhydrophobic Surface. Phys. Rev. Lett. 2006, 97, 044504. DOI: 10.1103/PhysRevLett.97.044504.
  • Henoch, C.; Krupenkin, T.; Kolodner, P.; Taylor, J.; Hodes, M. 2006 Turbulent Drag Reduction Using Superhydrophobic Surfaces. AIAA Flow Control Conference.: 3192. DOI: 10.2514/6.2006-3192.
  • Bhushan, B.; Jung, Y. C. Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction. Prog. Mater. Sci. 2011, 56, 1–108. DOI: 10.1016/j.pmatsci.2010.04.003.
  • Su, Y.; Ji, B.; Zhang, K.; Gao, H.; Huang, Y.; Hwang, K. Nano to Micro Structural Hierarchy is Crucial for Stable Superhydrophobic and Water-Repellent Surfaces. Langmuir. 2010, 26, 4984–4989. DOI: 10.1021/la9036452.
  • Xia, F.; Jiang, L. Bio‐Inspired, Smart, Multiscale Interfacial Materials. Adv. Mater. 2008, 20, 2842–2858. DOI: 10.1002/adma.200800836.
  • Qing, G. Y.; Sun, T. L.; Wang, F.; He, Y. B. Chromogenic Chemosensors for N‐Acetylaspartate Based on Chiral Ferrocene‐Bearing Thiourea Derivatives. Adv. Mater. 2009, 2, 5499–5507.
  • Jin, X.; Yang, S.; Li, Z.; Liu, K.; Jiang, L. Bio-Inspired Special Wetting Surfaces via Self-Assembly. Sci. China Chem. 2012, 55, 2327–2333. DOI: 10.1007/s11426-012-4707-6.
  • Qiu, Y. C.; Liu, K. S.; Jiang, L. Peanut Leaves with High Adhesive Superhydrophobicity and Their Biomimetic Materials. Sci. Sin.-Chim. 2011, 41, 403–408. DOI: 10.1360/032011-44.
  • Chen, C.-M.; Zhang, Q.; Zhao, X.-C.; Zhang, B.; Kong, Q.-Q.; Yang, M.-G.; Yang, Q.-H.; Wang, M.-Z.; Yang, Y.-G.; Schlögl, R.; Su, D. S. Hierarchically Aminated Graphene Honeycombs for Electrochemical Capacitive Energy Storage. J. Mater. Chem. 2012, 22, 14076–14084. DOI: 10.1039/c2jm31426f.
  • Yong, J.; Yang, Q.; Chen, F.; Zhang, D.; Farooq, U.; Du, G.; Hou, X. A Simple Way to Achieve Superhydrophobicity, Controllable Water Adhesion, Anisotropic Sliding, and Anisotropic Wetting Based on Femtosecond-Laser-Induced Line-Patterned Surfaces. J. Mater. Chem. A. 2014, 2, 5499–5507. DOI: 10.1039/C3TA14711H.
  • Yang, Z.; Tian, Y. L.; Yang, C. J.; Wang, F. J.; Liu, X. P. Modification of Wetting Property of Inconel 718 Surface by Nanosecond Laser Texturing. Appl. Surf. Sci. 2017, 414, 313–324. DOI: 10.1016/j.apsusc.2017.04.050.
  • Cheng-juan, Y.; Xue-song, M.; Yan-ling, T.; Da-wei, Z.; Yuan, L.; Xian-ping, L. Modification of Wettability Property of Titanium by Laser Texturing. Int. J. Adv. Manuf. Technol. 2016, 87, 1663–1668. DOI: 10.1007/s00170-016-8601-9.
  • Lu, T.; Zhiguang, G.; Wen, L. Optimal Design of Superhydrophobic Surfaces Using a Paraboloid Microtexture. J. Colloid Interface Sci. 2014, 436, 15, 19–28.
  • Evangelos, G.; Kosmas, E.; Angeliki, T. Hierarchical Micro and Nano Structured, Hydrophilic, Superhydrophobic and Superoleophobic Surfaces Incorporated in Microfluidics, Microarrays and Lab on Chip Microsystems. Microelectron. Eng. 2015, 132, 25, 135–155.
  • Han-Byeol, J.; Jehong, C.; Kyeong-Jae, B.; Hak-Jong, C.; Heon, L. Superhydrophobic and Superoleophobic Surfaces Using ZnO Nano-in-Micro Hierarchical Structures. Microelectron. Eng. 2014, 116, 51–57. DOI: 10.1016/j.mee.2013.10.009.
  • Annaso, B. G.; Qingfeng, X.; Sanjay, S.; Latthe, R. S. V.; Shanhu, L.; Hyun, Y.; Sam, S. Y. Superhydrophobic Coatings Prepared from Methyl-Modified Silica Particles Using Simple Dip-Coating Method. Ceram. Int. 2015, 41, 3017–3023. DOI: 10.1016/j.ceramint.2014.10.137.
  • Gao, N.; Yan, Y. Y.; Chen, X. Y.; Mee, D. J. Superhydrophobic Surfaces with Hierarchical Structure. Mater. Lett. 2011, 65, 2902–2905. DOI: 10.1016/j.matlet.2011.06.088.
  • Bhushan, B.; Koch, K.; Jung, Y. C. Biomimetic Hierarchical Structure for Self-Cleaning. Appl. Phys. Lett. 2008, 93, 093101. DOI: 10.1063/1.2976635.
  • Li, B.; Liu, C. S.; Qi, Y. B.; Cao, D. C.; Wan, Y. Preparation of Flower-like ZnO Micro-Sphere Powders and Their Surface Wettability Modification. AMR. 2011, 412, 17–20. DOI: 10.4028/www.scientific.net/AMR.412.17.
  • Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate. Adv. Mater. 1999, 11, 1365–1368. DOI: 10.1002/(SICI)1521-4095(199911)11:16<1365::AID-ADMA1365>3.0.CO;2-F.
  • Ryan, B. J.; Poduska, K. M. Roughness Effects on Contact Angle Measurements. Am. J. Phys. 2008, 76, 1074–1077. DOI: 10.1119/1.2952446.
  • Bharat, B.; YongChae, J. Wetting, Adhesion and Friction of Superhydrophobic and Hydrophilic Leaves and Fabricated Micro/Nanopatterned Surfaces. J. Phys.: Condens. Matter. 2008, 20, 225010.
  • Fukagata, K.; Kasagi, N.; Koumoutsakos, P. A Theoretical Prediction of Friction Drag Reduction in Turbulent Flow by Superhydrophobic Surfaces. Phys. Fluids. 2006, 18, 051703. DOI: 10.1063/1.2205307.
  • Bidkar, R. A.; Leblanc, L.; Kulkarni, A. J.; Bahadur, V.; Ceccio, S. L.; Perlin, M. Skin-Friction Drag Reduction in the Turbulent Regime Using Random-Textured Hydrophobic Surfaces. Phys. Fluids. 2014, 26, 085108. DOI: 10.1063/1.4892902.
  • Chang, Z.; Lu, Y. Fabrication of Superhydrophobic Surfaces with Cassie-Baxter State. J. Dispers. Sci. Technol. 2020, 12, 1–13. DOI: 10.1080/01932691.2020.1848571.
  • Brackbill, J. U.; Kothe, D. B.; Zemach, C. A Continuum Method for Modeling Surface Tension. Comput. Phys. 1992, 100, 335–354. DOI: 10.1016/0021-9991(92)90240-Y.
  • Lu, Y. Superior Lubrication Properties of Biomimetic Surfaces with Hierarchical Structure. Tribol. Int. 2018, 119, 131–142. DOI: 10.1016/j.triboint.2017.10.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.