177
Views
5
CrossRef citations to date
0
Altmetric
Articles

Application of mesoporous calcium silicate nanoparticles as a potential SD carrier to improve the solubility of curcumin

, , , , , ORCID Icon & show all
Pages 2258-2266 | Received 26 Oct 2021, Accepted 17 Apr 2022, Published online: 01 May 2022

References

  • Peng, F.; Tao, Q.; Wu, X.; Dou, H.; Spencer, S.; Mang, C.; Xu, L.; Sun, L.; Zhao, Y.; Li, H.; et al. Cytotoxic, Cytoprotective and Antioxidant Effects of Isolated Phenolic Compounds from Fresh Ginger. Fitoterapia 2012, 83, 568–585. DOI: 10.1016/j.fitote.2011.12.028.
  • Hussain, Z.; Thu, H. E.; Amjad, M. W.; Hussain, F.; Ahmed, T. A.; Khan, S. Exploring Recent Developments to Improve Antioxidant, anti-Inflammatory and Antimicrobial Efficacy of Curcumin: A Review of New Trends and Future Perspectives. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 1316–1326. DOI: 10.1016/j.msec.2017.03.226.
  • Wikene, K. O.; Hegge, A. B.; Bruzell, E.; Tonnesen, H. H. Formulation and Characterization of Lyophilized Curcumin Solid Dispersions for Antimicrobial Photodynamic Therapy (aPDT): Studies on Curcumin and Curcuminoids LII. Drug Dev. Ind. Pharm. 2015, 41, 969–977. DOI: 10.3109/03639045.2014.919315.
  • Chandran, B.; Goel, A. A Randomized, Pilot Study to Assess the Efficacy and Safety of Curcumin in Patients with Active Rheumatoid Arthritis. Phytother. Res. 2012, 26, 1719–1725. DOI: 10.1002/ptr.4639.
  • Lim, K. J.; Bisht, S.; Bar, E. E.; Maitra, A.; Eberhart, C. G. A Polymeric Nanoparticle Formulation of Curcumin Inhibits Growth, Clonogenicity and Stem-like Fraction in Malignant Brain Tumors. Cancer Biol. Ther. 2011, 11, 464–473. DOI: 10.4161/cbt.11.5.14410.
  • Gao, M.; Xu, H.; Zhang, C.; Liu, K.; Bao, X.; Chu, Q.; He, Y.; Tian, Y. Preparation and Characterization of Curcumin Thermosensitive Hydrogels for Intratumoral Injection Treatment. Drug Dev. Ind. Pharm. 2014, 40, 1557–1564. DOI: 10.3109/03639045.2013.838579.
  • Pröhl, M.; Schubert, U. S.; Weigand, W.; Gottschaldt, M. Metal Complexes of Curcumin and Curcumin Derivatives for Molecular Imaging and Anticancer Therapy. Coord. Chem. Rev. 2016, 307, 32–41. DOI: 10.1016/j.ccr.2015.09.001.
  • Wan, S.; Sun, Y.; Qi, X.; Tan, F. Improved Bioavailability of Poorly Water-Soluble Drug Curcumin in Cellulose Acetate Solid Dispersion. AAPS Pharmscitech 2012, 13, 159–166. DOI: 10.1208/s12249-011-9732-9.
  • Anand, P.; Kunnumakkara, A. B.; Newman, R. A.; Aggarwal, B. B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4, 807–818. DOI: 10.1021/mp700113r.
  • Shin, G. H.; Chung, S. K.; Kim, J. T.; Joung, H. J.; Park, H. J. Preparation of Chitosan-Coated Nanoliposomes for Improving the Mucoadhesive Property of Curcumin Using the Ethanol Injection Method. J. Agric. Food Chem. 2013, 61, 11119–11126. DOI: 10.1021/jf4035404.
  • Frank, K. J.; Rosenblatt, K. M.; Westedt, U.; Hölig, P.; Rosenberg, J.; Mägerlein, M.; Fricker, G.; Brandl, M. Amorphous Solid Dispersion Enhances Permeation of Poorly Soluble ABT-102: True Supersaturation vs. apparent Solubility Enhancement. Int. J. Pharm. 2012, 437, 288–293. DOI: 10.1016/j.ijpharm.2012.08.014.
  • Chuah, A. M.; Jacob, B.; Jie, Z.; Ramesh, S.; Mandal, S.; Puthan, J. K.; Deshpande, P.; Vaidyanathan, V. V.; Gelling, R. W.; Patel, G.; et al. Enhanced Bioavailability and Bioefficacy of an Amorphous Solid Dispersion of Curcumin. Food Chem. 2014, 156, 227–233. DOI: 10.1016/j.foodchem.2014.01.108.
  • Mihajlovic, T.; Kachrimanis, K.; Graovac, A.; Djuric, Z.; Ibric, S. Improvement of Aripiprazole Solubility by Complexation with (2-hydroxy)propyl-β-cyclodextrin using spray drying technique. AAPS Pharmscitech 2012, 13, 623–631. DOI: 10.1208/s12249-012-9786-3.
  • Shevchenko, A.; Bimbo, L. M.; Miroshnyk, I.; Haarala, J.; Jelinkova, K.; Syrjanen, K.; van Veen, B.; Kiesvaara, J.; Santos, H. A.; Yliruusi, J. A New Cocrystal and Salts of Itraconazole: Comparison of Solid-State Properties, Stability and Dissolution Behavior. Int. J. Pharm. 2012, 436, 403–409. DOI: 10.1016/j.ijpharm.2012.06.045.
  • Singh, A.; Worku, Z. A.; Van den Mooter, G. Oral Formulation Strategies to Improve Solubility of Poorly Water-Soluble Drugs. Expert Opin. Drug Deliv. 2011, 8, 1361–1378. DOI: 10.1517/17425247.2011.606808.
  • Planinsek, O.; Kovacic, B.; Vrecer, F. Carvedilol Dissolution Improvement by Preparation of Solid Dispersions with Porous Silica. Int. J. Pharm. 2011, 406, 41–48.
  • Beak, I.-H.; Kim, M.-S. Improved Supersaturation and Oral Absorption of Dutasteride by Amorphous Solid Dispersions. Chem. Pharm. Bull. 2012, 60, 1468–1473. DOI: 10.1248/cpb.c12-00563.
  • Potluri, R.; Bandari, S.; Jukanti, R.; Veerareddy, P. R. Solubility Enhancement and Physicochemical Characterization of Carvedilol Solid Dispersion with Gelucire 50/13. Arch. Pharm. Res. 2011, 34, 51–57. DOI: 10.1007/s12272-011-0106-3.
  • Zhao, G.; Zeng, Q.; Zhang, S.; Zhong, Y.; Wang, C.; Chen, Y.; Ou, L.; Liao, Z. Effect of Carrier Lipophilicity and Preparation Method on the Properties of Andrographolide-Solid Dispersion. Pharmaceutics 2019, 11, 74. DOI: 10.3390/pharmaceutics11020074.
  • Teoh, X.-Y.; Mahyuddin, F.; Ahmad, W.; Chan, S.-Y. Formulation Strategy of Nitrofurantoin: co-Crystal or Solid Dispersion? Pharm. Dev. Technol. 2020, 25, 245–251. DOI: 10.1080/10837450.2019.1689401.
  • de Alencar Danda, L. J.; Batista, O.; Silveira Melo, V. C.; Soares Sobrinho, J. L.; de La Roca Soares, M. F. Combining Amorphous Solid Dispersions for Improved Kinetic Solubility of Posaconazole Simultaneously Released from Soluble PVP/VA64 and an Insoluble Ammonio Methacrylate Copolymer. Eur. J. Pharm. Sci. 2019, 133, 79–85. DOI: 10.1016/j.ejps.2019.03.012.
  • Shamblin, S. L.; Zografi, G. The Effects of Absorbed Water on the Properties of Amorphous Mixtures Containing Sucrose. Pharm. Res. 1999, 16, 1119–1124. DOI: 10.1023/a:1018960405504.
  • Rumondor, A.; Taylor, L. S. Effect of Polymer Hygroscopicity on the Phase Behavior of Amorphous Solid Dispersions in the Presence of Moisture. Mol. Pharm. 2010, 7, 477–490. DOI: 10.1021/mp9002283.
  • Andronis, V.; Zografi, G. The Molecular Mobility of Supercooled Amorphous Indomethacin as a Function of Temperature and Relative Humidity. Pharm. Res. 1998, 15, 835–842. DOI: 10.1023/a:1011960112116.
  • Kinoshita, M.; Baba, K.; Nagayasu, A.; Yamabe, K.; Shimooka, T.; Takeichi, Y.; Azuma, M.; Houchi, H.; Minakuchi, K. Improvement of Solubility and Oral Bioavailability of a Poorly Water-Soluble Drug, TAS-301, by Its Melt-Adsorption on a Porous Calcium Silicate. J. Pharm. Sci. 2002, 91, 362–370. DOI: 10.1002/jps.10026.
  • Fujimoto, Y.; Hirai, N.; Takatani-Nakase, T.; Takahashi, K. Preparation and Evaluation of Solid Dispersion Tablets by a Simple and Manufacturable Wet Granulation Method Using Porous Calcium Silicate. Chem. Pharm. Bull. (Tokyo) 2016, 64, 311–318. DOI: 10.1248/cpb.c15-00838.
  • Huang, C.-Y.; Huang, T.-H.; Kao, C.-T.; Wu, Y.-H.; Chen, W.-C.; Shie, M.-Y. Mesoporous Calcium Silicate Nanoparticles with Drug Delivery and Odontogenesis Properties. J. Endod. 2017, 43, 69–76. DOI: 10.1016/j.joen.2016.09.012.
  • Chen, Y.-C.; Shie, M.-Y.; Wu, Y.-H. A.; Lee, K.-X. A.; Wei, L.-J.; Shen, Y.-F. Anti-Inflammation Performance of Curcumin-Loaded Mesoporous Calcium Silicate Cement. J. Formos. Med. Assoc. 2017, 116, 679–688. DOI: 10.1016/j.jfma.2017.06.005.
  • Fan, W.; Li, Y.; Sun, Q.; Ma, T.; Fan, B. Calcium-Silicate Mesoporous Nanoparticles Loaded with Chlorhexidine for Both anti-Enterococcus faecalis and Mineralization Properties. J. Nanobiotechnol. 2016, 14, 1–12.
  • Duan, M.; Fan, W.; Fan, B. Mesoporous Calcium-Silicate Nanoparticles Loaded with Low-Dose Triton-100+ Ag + to Achieve Both Enhanced Antibacterial Properties and Low Cytotoxicity for Dentin Disinfection of Human Teeth. Pharmaceutics 2021, 13, 1518. DOI: 10.3390/pharmaceutics13091518.
  • Wang, X.; Li, L.; Huo, W.; Hou, L.; Zhao, Z.; Li, W. Characterization and Stability of Tanshinone IIA Solid Dispersions with Hydroxyapatite. Materials (Basel) 2013, 6, 805–816. DOI: 10.3390/ma6030805.
  • Niu, Y.; Ke, D.; Yang, Q.; Wang, X.; Chen, Z.; An, X.; Shen, W. Temperature-Dependent Stability and DPPH Scavenging Activity of Liposomal Curcumin at pH 7.0. Food Chem. 2012, 135, 1377–1382. DOI: 10.1016/j.foodchem.2012.06.018.
  • Jiang, J.; Oberdörster, G.; Biswas, P. Characterization of Size, Surface Charge, and Agglomeration State of Nanoparticle Dispersions for Toxicological Studies. J. Nanopart. Res. 2009, 11, 77–89. DOI: 10.1007/s11051-008-9446-4.
  • Baldassarre, F.; Cacciola, M.; Ciccarella, G. A Predictive Model of Iron Oxide Nanoparticles Flocculation Tuning Z-Potential in Aqueous Environment for Biological Application. J. Nanopart. Res. 2015, 17, 1–21. DOI: 10.1007/s11051-015-3163-6.
  • Tran, T. T.-D.; Tran, K. A.; Tran, P. H.-L. Modulation of Particle Size and Molecular Interactions by Sonoprecipitation Method for Enhancing Dissolution Rate of Poorly Water-Soluble Drug. Ultrason. Sonochem. 2015, 24, 256–263. DOI: 10.1016/j.ultsonch.2014.11.020.
  • Fan, N.; He, Z.; Ma, P.; Wang, X.; Li, C.; Sun, J.; Sun, Y.; Li, J. Impact of HPMC on Inhibiting Crystallization and Improving Permeability of Curcumin Amorphous Solid Dispersions. Carbohydr. Polym. 2018, 181, 543–550. DOI: 10.1016/j.carbpol.2017.12.004.
  • Newman, A.; Knipp, G.; Zografi, G. Assessing the Performance of Amorphous Solid Dispersions. J. Pharm. Sci. 2012, 101, 1355–1377. DOI: 10.1002/jps.23031.
  • Montalbán, M. G.; Coburn, J. M.; Lozano-Pérez, A. A.; Cenis, J. L.; Víllora, G.; Kaplan, D. L. Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy. Nanomaterials 2018, 8, 126. DOI: 10.3390/nano8020126.
  • Umerska, A.; Gaucher, C.; Oyarzun-Ampuero, F.; Fries-Raeth, I.; Colin, F.; Villamizar-Sarmiento, M.; Maincent, P.; Sapin-Minet, A. Sapin-Minet, A. Polymeric Nanoparticles for Increasing Oral Bioavailability of Curcumin. Antioxidants 2018, 7, 46. DOI: 10.3390/antiox7040046.
  • Kaminaga, Y.; Nagatsu, A.; Akiyama, T.; Sugimoto, N.; Yamazaki, T.; Maitani, T.; Mizukami, H. Production of Unnatural Glucosides of Curcumin with Drastically Enhanced Water Solubility by Cell Suspension Cultures of Catharanthus roseus. FEBS Lett. 2003, 555, 311–316. DOI: 10.1016/s0014-5793(03)01265-1.
  • Sareen, R.; Jain, N.; Dhar, K. Curcumin-Zn(II) Complex for Enhanced Solubility and Stability: An Approach for Improved Delivery and Pharmacodynamic Effects . Pharm. Dev. Technol. 2016, 21, 630–635. DOI: 10.3109/10837450.2015.1041042.
  • Tapal, A.; Tiku, P. K. Complexation of Curcumin with Soy Protein Isolate and Its Implications on Solubility and Stability of Curcumin. Food Chem. 2012, 130, 960–965. DOI: 10.1016/j.foodchem.2011.08.025.
  • Yu, H.; Huang, Q. Enhanced in Vitro anti-Cancer Activity of Curcumin Encapsulated in Hydrophobically Modified Starch. Food Chem. 2010, 119, 669–674. DOI: 10.1016/j.foodchem.2009.07.018.
  • Xie, X.; Tao, Q.; Zou, Y.; Zhang, F.; Guo, M.; Wang, Y.; Wang, H.; Zhou, Q.; Yu, S. PLGA Nanoparticles Improve the Oral Bioavailability of Curcumin in Rats: characterizations and Mechanisms. J. Agric. Food Chem. 2011, 59, 9280–9289. [Database] DOI: 10.1021/jf202135j.
  • Paradkar, A.; Ambike, A. A.; Jadhav, B. K.; Mahadik, K. Characterization of Curcumin-PVP Solid Dispersion Obtained by Spray Drying. Int. J. Pharm. 2004, 271, 281–286. DOI: 10.1016/j.ijpharm.2003.11.014.
  • Mangolim, C. S.; Moriwaki, C.; Nogueira, A. C.; Sato, F.; Baesso, M. L.; Neto, A. M.; Matioli, G. Curcumin-β-cyclodextrin Inclusion Complex: Stability, Solubility, Characterisation by FT-IR, FT-Raman, X-ray Diffraction and Photoacoustic Spectroscopy, and Food Application. Food Chem. 2014, 153, 361–370. DOI: 10.1016/j.foodchem.2013.12.067.
  • Fares, M. M.; Salem, M. Dissolution Enhancement of Curcumin via Curcumin-Prebiotic Inulin Nanoparticles. Drug Dev. Ind. Pharm. 2015, 41, 1785–1792. DOI: 10.3109/03639045.2015.1004184.
  • Xiong, L.; Du, X.; Shi, B.; Bi, J.; Kleitz, F.; Qiao, S. Z. Tunable Stellate Mesoporous Silica Nanoparticles for Intracellular Drug Delivery. J. Mater. Chem. B 2015, 3, 1712–1721. DOI: 10.1039/c4tb01601g.
  • Yang, P.; Quan, Z.; Lu, L.; Huang, S.; Lin, J. Luminescence Functionalization of Mesoporous Silica with Different Morphologies and Applications as Drug Delivery Systems. Biomaterials 2008, 29, 692–702. DOI: 10.1016/j.biomaterials.2007.10.019.
  • Donsi, F.; Wang, Y.; Li, J.; Huang, Q. Preparation of Curcumin Sub-Micrometer Dispersions by High-Pressure Homogenization. J. Agric. Food Chem. 2010, 58, 2848–2853. DOI: 10.1021/jf903968x.
  • Sanphui, P.; Goud, N. R.; Khandavilli, U. R.; Bhanoth, S.; Nangia, A. New Polymorphs of Curcumin. Chem. Commun. (Camb) 2011, 47, 5013–5015. DOI: 10.1039/c1cc10204d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.