148
Views
1
CrossRef citations to date
0
Altmetric
Articles

Gemini surfactant based-organomontmorillonites: preparation, characterization and application in pickering emulsion

, , &
Pages 2280-2291 | Received 08 Feb 2022, Accepted 17 Apr 2022, Published online: 05 May 2022

References

  • Wei, Y. s.; Niu, Z. c.; Wang, F. q.; Feng, K.; Zong, M. h.; Wu, H. A Novel Pickering Emulsion System as the Carrier of Tocopheryl Acetate for Its Application in Cosmetics. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 109, 110503. DOI: 10.1016/j.msec.2019.110503.
  • Zia, A.; Pentzer, E.; Thickett, S.; Kempe, K. Advances and Opportunities of Oil-in-Oil Emulsions. ACS Appl. Mater. Interfaces 2020, 12, 38845–38861. DOI: 10.1021/acsami.0c07993.
  • Wang, L.; Liu, H.; Chen, S.; Wang, M.; Liu, Y.; Yu, W.; Zhang, X. Crude Oil-Contaminated Soil Treatment and Oil Recovery through Micro-Emulsion Washing. Energy Fuels 2019, 33, 11486–11493. DOI: 10.1021/acs.energyfuels.9b02753.
  • Feng, H.; Kang, W.; Zhang, L.; Chen, J.; Li, Z.; Zhou, Q.; Wu, H. Experimental Study on a Fine Emulsion Flooding System to Enhance Oil Recovery for Low Permeability Reservoirs. J. Pet. Sci. Eng. 2018, 171, 974–981. DOI: 10.1016/j.petrol.2018.08.011.
  • Asfour, M. H.; Elmotasem, H.; Mostafa, D. M.; Salama, A. A. A. Chitosan Based Pickering Emulsion as a Promising Approach for Topical Application of Rutin in a Solubilized Form Intended for Wound Healing: In Vitro and in Vivo Study. Int. J. Pharm. 2017, 534, 325–338. DOI: 10.1016/j.ijpharm.2017.10.044.
  • Yang, Z.; Wang, W.; Tai, X.; Wang, G. Preparation of Modified Montmorillonite with Different Quaternary Ammonium Salts and Application in Pickering Emulsion. New J. Chem. 2019, 43, 11543–11548. DOI: 10.1039/C9NJ01606F.
  • Ma, S.; Zong, W.; Han, X. Magnetic-Responsive Pickering Emulsion and Its Catalytic Application at the Water-Oil Interface. New J. Chem. 2021, 45, 3974–3980. DOI: 10.1039/D0NJ05875K.
  • Wu, M.; Zhou, Z.; Yang, J.; Zhang, M.; Cai, F.; Lu, P. ZnO Nanoparticles Stabilized Oregano Essential Oil Pickering Emulsion for Functional Cellulose Nanofibrils Packaging Films with Antimicrobial and Antioxidant Activity. Int. J. Biol. Macromol. 2021, 190, 433–440. DOI: 10.1016/j.ijbiomac.2021.08.210.
  • Zhang, X.; Wang, Y.; Luo, X.; Lu, A.; Li, Y.; Li, B.; Liu, S. O/W Pickering Emulsion Templated Organo-Hydrogels with Enhanced Mechanical Strength and Energy Storage Capacity. ACS Appl. Bio. Mater. 2019, 2, 480–487. DOI: 10.1021/acsabm.8b00674.
  • Jiang, H.; Liu, L.; Li, Y.; Yin, S.; Ngai, T. Inverse Pickering Emulsion Stabilized by Binary Particles with Contrasting Characteristics and Functionality for Interfacial Biocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 4989–4997. DOI: 10.1021/acsami.9b16117.
  • Wei, X. Q.; Zhang, W. J.; Lai, L.; Mei, P.; Wu, L. M.; Wang, Y. Q. Different Cationic Surfactants-Modified Silica Nanoparticles for Pickering Emulsions. J. Mol. Liq 2019, 291, 111341. DOI: 10.1016/j.molliq.2019.111341.
  • Björkegren, S.; Nordstierna, L.; Törncrona, A.; Palmqvist, A. Hydrophilic and Hydrophobic Modifications of Colloidal Silica Particles for Pickering Emulsions. J. Colloid Interface Sci. 2017, 487, 250–257. DOI: 10.1016/j.jcis.2016.10.031.
  • Lu, X.; Zhang, H.; Li, Y.; Huang, Q. Fabrication of Milled Cellulose Particles-Stabilized Pickering Emulsions. Food Hydrocoll. 2018, 77, 427–435. DOI: 10.1016/j.foodhyd.2017.10.019.
  • Katepalli, H.; John, V. T.; Bose, A. The Response of Carbon Black Stabilized Oil-in-Water Emulsions to the Addition of Surfactant Solutions. Langmuir 2013, 29, 6790–6797. DOI: 10.1021/la400037c.
  • Li, X.; Wang, Y.; Hou, Q.; Cai, W.; Xu, Y.; Zhao, Y. Fabrication of Thermo-Responsive Janus Silica Nanoparticles and the Structure–Performance Relationship in Pickering Emulsions. Res. Chem. Intermed. 2021, 47, 3899–3917. DOI: 10.1007/s11164-021-04486-8.
  • Barison, S.; Cabaleiro, D.; Rossi, S.; Kovtun, A.; Melucci, M.; Agresti, F. Paraffin – Graphene Oxide Hybrid Nano Emulsions for Thermal Management Systems. Colloids Surf. A: Physicochem. Eng. Asp 2021, 627, 127132. DOI: 10.1016/j.colsurfa.2021.127132.
  • Vassaux, S.; Savary, G.; Le Pluart, L.; Grisel, M. On the Key Role of Process Parameters to Control Stability and Properties of Pickering Emulsions Stabilized by Montmorillonite. Colloids Surf. A: Physicochem. Eng. Asp 2019, 583, 123952. DOI: 10.1016/j.colsurfa.2019.123952.
  • Katepalli, H.; John, V. T.; Tripathi, A.; Bose, A. Microstructure and Rheology of Particle Stabilized Emulsions: Effects of Particle Shape and Inter-Particle Interactions. J. Colloid Interface Sci. 2017, 485, 11–17. DOI: 10.1016/j.jcis.2016.09.015.
  • Zhuang, G.; Zhang, Z.; Peng, S.; Gao, J.; Jaber, M. Enhancing the Rheological Properties and Thermal Stability of Oil-Based Drilling Fluids by Synergetic Use of Organo-Montmorillonite and Organo-Sepiolite. Appl. Clay Sci. 2018, 161, 505–512. DOI: 10.1016/j.clay.2018.05.018.
  • Hong, J. S.; Bergfreund, J.; Fischer, P. Complex Emulsion Stabilization Behavior of Clay Particles and Surfactants Based on an Interfacial Rheological Study. Colloids Surf. A: Physicochem. Eng. Asp 2020, 602, 125121. DOI: 10.1016/j.colsurfa.2020.125121.
  • Chen, Q.; Yang, Z.; Tai, X.; Bai, Y.; Wang, G. Study on Influencing Factors of Pickering Emulsion Stabilized by Modified Montmorillonite and Fatty Alcohol Polyoxyethylene Ether. J. Dispers. Sci. Technol. 2021, 0, 1–9. DOI: 10.1080/01932691.2021.1884088.
  • Dong, J.; Worthen, A. J.; Foster, L. M.; Chen, Y.; Cornell, K. A.; Bryant, S. L.; Truskett, T. M.; Bielawski, C. W.; Johnston, K. P. Modified Montmorillonite Clay Microparticles for Stable Oil-in-Seawater Emulsions. ACS Appl. Mater. Interfaces 2014, 6, 11502–11513. DOI: 10.1021/am502187t.
  • Liang, S.; Li, C.; Dai, L.; Tang, Q.; Cai, X.; Zhen, B.; Xie, X.; Wang, L. Selective Modification of Kaolinite with Vinyltrimethoxysilane for Stabilization of Pickering Emulsions. Appl. Clay Sci. 2018, 161, 282–289. DOI: 10.1016/j.clay.2018.04.038.
  • Ogunlaja, S. B.; Pal, R. Effects of Bentonite Nanoclay and Cetyltrimethyl Ammonium Bromide Modified Bentonite Nanoclay on Phase Inversion of Water-in-Oil Emulsions. Colloids Interfaces 2020, 4, 2–14. DOI: 10.3390/colloids4010002.
  • Ashby, N. P.; Binks, B. P. Pickering Emulsions Stabilised by Laponite Clay Particles. Phys. Chem. Chem. Phys. 2000, 2, 5640–5646. DOI: 10.1039/b007098j.
  • Ren, H. P.; Tian, S. P.; Zhu, M.; Zhao, Y. Z.; Li, K. X.; Ma, Q.; Ding, S. Y.; Gao, J.; Miao, Z. Modification of Montmorillonite by Gemini Surfactants with Different Chain Lengths and Its Adsorption Behavior for Methyl Orange. Appl. Clay Sci. 2018, 151, 29–36. DOI: 10.1016/j.clay.2017.10.024.
  • Yang, S.; Gao, M.; Luo, Z. Adsorption of 2-Naphthol on the Organo-Montmorillonites Modified by Gemini Surfactants with Different Spacers. Chem. Eng. J. 2014, 256, 39–50. DOI: 10.1016/j.cej.2014.07.004.
  • Bergaya, F.; Lagaly, G. Surface Modification of Clay Minerals. Appl. Clay Sci. 2001, 19, 1–3. DOI: 10.1016/S0169-1317(01)00063-1.
  • Lin, L.; Liu, H.; Yu, N. Morphology and Thermal Properties of Poly(L-Lactic Acid)/Organoclay Nanocomposites. J. Appl. Polym. Sci. 2007, 106, 260–266. DOI: 10.1002/app.26477.
  • Taleb, K.; Mohamed-benkada, M.; Benhamed, N.; Saidi-besbes, S.; Grohens, Y.; Derdour, A. Benzene Ring Containing Cationic Gemini Surfactants : Synthesis, Surface Properties and Antibacterial Activity. J. Mol. Liq. 2017, 241, 81–90. DOI: 10.1016/j.molliq.2017.06.008.
  • Kamal, M. S. A Review of Gemini Surfactants: Potential Application in Enhanced Oil Recovery. J. Surfact. Deterg. 2016, 19, 223–236. DOI: 10.1007/s11743-015-1776-5.
  • Wang, L.; Qin, H.; Ding, L.; Huo, S.; Deng, Q.; Zhao, B.; Meng, L.; Yan, T. Preparation of a Novel Class of Cationic Gemini Imidazolium Surfactants Containing Amide Groups as the Spacer: Their Surface Properties and Antimicrobial Activity. J. Surfact. Deterg. 2014, 17, 1099–1106. DOI: 10.1007/s11743-014-1614-1.
  • Fereidooni Moghadam, T.; Azizian, S.; Wettig, S. Effect of Spacer Length on the Interfacial Behavior of N,N'-bis(dimethylalkyl)-α,ω-alkanediammonium Dibromide Gemini Surfactants in the Absence and Presence of ZnO Nanoparticles . J. Colloid Interface Sci. 2017, 486, 204–210. DOI: 10.1016/j.jcis.2016.09.069.
  • Veronovski, N.; Andreozzi, P.; La Mesa, C.; Sfiligoj-Smole, M.; Ribitsch, V. Use of Gemini Surfactants to Stabilize TiO2 P25 Colloidal Dispersions. Colloid Polym. Sci. 2010, 288, 387–394. DOI: 10.1007/s00396-009-2133-x.
  • Sun, Z.; Park, Y.; Zheng, S.; Ayoko, G. A.; Frost, R. L. Thermal Stability and Hot-Stage Raman Spectroscopic Study of Ca-Montmorillonite Modified with Different Surfactants: A Comparative Study. Thermochim. Acta 2013, 569, 151–160. DOI: 10.1016/j.tca.2013.07.022.
  • Taleb, K.; Pillin, I.; Grohens, Y.; Saidi-Besbes, S. Gemini Surfactant Modified Clays: Effect of Surfactant Loading and Spacer Length. Appl. Clay Sci. 2018, 161, 48–56. DOI: 10.1016/j.clay.2018.03.015.
  • Gu, Z.; Gao, M.; Luo, Z.; Xue, G.; Lu, L.; Liu, Y. Gemini Surfactant Modified Montmorillonite as Highly Efficient Adsorbent for Anionic Dyes. Sep. Sci. Technol. 2014, 49, 2878–2889. DOI: 10.1080/01496395.2014.943238.
  • Zhou, L.; Chen, H.; Jiang, X.; Lu, F.; Zhou, Y.; Yin, W.; Ji, X. Modification of Montmorillonite Surfaces Using a Novel Class of Cationic Gemini Surfactants. J. Colloid Interface Sci. 2009, 332, 16–21. DOI: 10.1016/j.jcis.2008.12.051.
  • Mallakpour, S.; Dinari, M. Preparation and Characterization of New Organoclays Using Natural Amino Acids and Cloisite Na+. Appl. Clay Sci. 2011, 51, 353–359. DOI: 10.1016/j.clay.2010.12.028.
  • Zhang, Z.; Zhang, J.; Liao, L.; Xia, Z. Synergistic Effect of Cationic and Anionic Surfactants for the Modification of Ca-Montmorillonite. Mater. Res. Bull 2013, 48, 1811–1816. DOI: 10.1016/j.materresbull.2013.01.029.
  • Calderon, J. U.; Lennox, B.; Kamal, M. R. Thermally Stable Phosphonium-Montmorillonite Organoclays. Appl. Clay Sci. 2008, 40, 90–98. DOI: 10.1016/j.clay.2007.08.004.
  • Ni, R.; Huang, Y.; Yao, C. Thermogravimetric Analysis of Organoclays Intercalated with the Gemini Surfactants. J. Therm. Anal. Calorim. 2009, 96, 943–947. DOI: 10.1007/s10973-009-0046-z.
  • Liu, B.; Wang, X.; Yang, B.; Sun, R. Rapid Modification of Montmorillonite with Novel Cationic Gemini Surfactants and Its Adsorption for Methyl Orange. Mater. Chem. Phys. 2011, 130, 1220–1226. DOI: 10.1016/j.matchemphys.2011.08.064.
  • Zidelkheir, B.; Abdelgoad, M. Effect of Surfactant Agent upon the Structure of Montmorillonite: X-Ray Diffraction and Thermal Analysis. J. Therm. Anal. Calorim. 2008, 94, 181–187. DOI: 10.1007/s10973-008-9053-8.
  • Xi, Y.; Frost, R. L.; He, H. Modification of the Surfaces of Wyoming Montmorillonite by the Cationic Surfactants Alkyl Trimethyl, Dialkyl Dimethyl, and Trialkyl Methyl Ammonium Bromides. J Colloid Interface Sci 2007, 305, 150–158. DOI: 10.1016/j.jcis.2006.09.033.
  • Mekhzoum, M. E. M.; Raji, M.; Rodrigue, D.; Qaiss, A.; el Kacem.; Bouhfid, R. The Effect of Benzothiazolium Surfactant Modified Montmorillonite Content on the Properties of Polyamide 6 Nanocomposites. Appl. Clay Sci. 2020, 185, 105417. DOI: 10.1016/j.clay.2019.105417.
  • Luo, Z.; Gao, M.; Ye, Y.; Yang, S. Modification of Reduced-Charge Montmorillonites by a Series of Gemini Surfactants: Characterization and Application in Methyl Orange Removal. Appl. Surf. Sci. 2015, 324, 807–816. DOI: 10.1016/j.apsusc.2014.11.043.
  • Vishnu Mahesh, K. R.; Narasimha Murthy, H. N.; Kumaraswamy, E.; Raghavendra, N.; Sridhar, R.; Krishna, M.; Pattar, N.; Pal, R.; Sherigara, B. S. Synthesis and Characterization of Organomodified Na-MMT Using Cation and Anion Surfactants. Front. Chem. China 2011, 6, 153–158. DOI: 10.1007/s11458-011-0239-4.
  • Park, Y.; Ayoko, G. A.; Kristof, J.; Horváth, E.; Frost, R. L. Thermal Stability of Organoclays with Mono- and Di-Alkyl Cationic Surfactants: A Comparative Study. J Therm Anal Calorim 2012, 110, 1087–1093. DOI: 10.1007/s10973-011-2025-4.
  • Sun, Z.; Park, Y.; Zheng, S.; Ayoko, G. A.; Frost, R. L. XRD, TEM, and Thermal Analysis of Arizona Ca-Montmorillonites Modified with Didodecyldimethylammonium Bromide. J. Colloid Interface Sci. 2013, 408, 75–81. DOI: 10.1016/j.jcis.2013.07.007.
  • Nie, J.; Ke, Y.; Zheng, H.; Yi, Y.; Qin, Q.; Pan, F.; Dong, P. Preparation and Characterization of Organo Montmorillonite Modified by a Novel Gemini Surfactant. Integr. Ferroelectr. 2012, 137, 67–76. DOI: 10.1080/10584587.2012.687271.
  • Qi, L.; Liao, W.; Bi, Z. Adsorption of Conventional and Gemini Cationic Surfactants in Nonswelling and Swelling Layer Silicate. Colloids Surf. A. Physicochem. Eng. Asp 2007, 302, 568–572. DOI: 10.1016/j.colsurfa.2007.03.035.
  • Zawrah, M. F.; Khattab, R. M.; Saad, E. M.; Gado, R. A. Effect of Surfactant Types and Their Concentration on the Structural Characteristics of Nanoclay. Spectrochim Acta A Mol Biomol Spectrosc 2014, 122, 616–623. DOI: 10.1016/j.saa.2013.11.076.
  • Yang, Q.; Gao, M.; Luo, Z.; Yang, S. Enhanced Removal of Bisphenol a from Aqueous Solution by Organo-Montmorillonites Modified with Novel Gemini Pyridinium Surfactants Containing Long Alkyl Chain. Chem. Eng. J 2016, 285, 27–38. DOI: 10.1016/j.cej.2015.09.114.
  • Praus, P.; Turicová, M.; Študentová, S.; Ritz, M. Study of Cetyltrimethylammonium and Cetylpyridinium Adsorption on Montmorillonite. J. Colloid Interface Sci. 2006, 304, 29–36. DOI: 10.1016/j.jcis.2006.08.038.
  • McClements, D. J.; Jafari, S. M. Improving Emulsion Formation, Stability and Performance Using Mixed Emulsifiers: A Review. Adv. Colloid Interface Sci. 2018, 251, 55–79. DOI: 10.1016/j.cis.2017.12.001.
  • Kim, J. K.; Rühs, P. A.; Fischer, P.; Hong, J. S. Interfacial Localization of Nanoclay Particles in Oil-in-Water Emulsions and Its Reflection in Interfacial Moduli. Rheol. Acta 2013, 52, 327–335. DOI: 10.1007/s00397-013-0689-3.
  • Jeon, T. Y.; Hong, J. S. Stabilization of O/W Emulsion with Hydrophilic/Hydrophobic Clay Particles. Colloid Polym. Sci. 2014, 292, 2939–2947. DOI: 10.1007/s00396-014-3353-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.