405
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Antioxidant and anti-tyrosinase activities of quercetin-loaded olive oil nanoemulsion as potential formulation for skin hyperpigmentation

, , , , &
Pages 2628-2638 | Received 11 Apr 2022, Accepted 20 Aug 2022, Published online: 05 Sep 2022

References

  • Ortonne, J.-P.; Bissett, D. L. Latest Insights into Skin Hyperpigmentation. J. Invest. Dermatol. Symp. Proc. 2008, 13, 10–14. DOI: 10.1038/jidsymp.2008.7.
  • Serena, N. B.; Smoller, G. B. An Overview on Melasma. Pigmentary Disord. 2015, 2, 218. DOI: 10.4172/2376-0427.1000216.
  • Bandyopadhyay, D. Topical Treatment of Melasma. Indian J. Dermatol. 2009, 54, 303–309. DOI: 10.4103/0019-5154.57602.
  • Ogbechie-Godec, O. A.; Elbuluk, N. Melasma: An Up-to-Date Comprehensive Review. Dermatol. Ther. (Heidelb) 2017, 7, 305–318. DOI: 10.1007/s13555-017-0194-1.
  • Sarkar, R.; Arora, P.; Garg, K. V. Cosmeceuticals for Hyperpigmentation: What is Available? J. Cutaneous Aesthetic Surg. 2013, 6, 4–11. DOI: 10.4103/0974-2077.110089.
  • Martins, V. M. R.; de Sousa, A. R. D.; de, N.; Portela, C.; Tigre, C. A. F.; Gonçalves, L. M. S.; de, R. J.; Castro Filho, L. Exogenous Ochronosis: Case Report and Literature Review. Anais Brasileiros Dermatol. 2012, 87, 633–636. DOI: 10.1590/s0365-05962012000400021.
  • Nomakhosi, M.; Heidi, A. Natural Options for Management of Melasma, A Review. J. Cosmet. Laser Ther. 2018, 20, 470–481. DOI: 10.1080/14764172.2018.1427874.
  • Nautiyal, A.; Wairkar, S. Management of Hyperpigmentation: Current Treatments and Emerging Therapies. Pigm. Cell Melanoma Res. 2021, 34, 1000–1014. DOI: 10.1111/pcmr.12986.
  • Vaezi, M. Evaluation of Quercetin Omega-6 and -9 Esters on Activity and Structure of Mushroom Tyrosinase: Spectroscopic and Molecular Docking Studies. J. Food Biochem. 2021, 45, e13953. DOI: 10.1111/jfbc.13953.
  • Phasha, V.; Senabe, J.; Ndzotoyi, P.; Okole, B.; Fouche, G.; Chuturgoon, A. Review on the Use of Kojic Acid—A Skin-Lightening Ingredient. Cosmetics 2022, 9, 64. DOI: 10.3390/cosmetics9030064.
  • Trivedi, M. K.; Yang, F. C.; Cho, B. K. A Review of Laser and Light Therapy in Melasma. Int. J. Womens Dermatol. 2017, 3, 11–20. DOI: 10.1016/j.ijwd.2017.01.004.
  • Hsu, J.-Y.; Lin, H.-H.; Li, T.-S.; Tseng, C.-Y.; Wong, Y.; Chen, J.-H. Anti-Melanogenesis Effects of Lotus Seedpod In Vitro and In Vivo. Nutrients 2020, 12, 3535. DOI: 10.3390/nu12113535.
  • Choi, M.-H.; Shin, H.-J. Anti-Melanogenesis Effect of Quercetin. Cosmetics 2016, 3, 18. DOI: 10.3390/cosmetics3020018.
  • Solano, F. Photoprotection and Skin Pigmentation: Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources. Molecules 2020, 25, 1537. DOI: 10.3390/molecules25071537.
  • Athawale, R.; Salavkar, S.; Tamanekar, R. Antioxidants in Skin ageing - Future of Dermatology. Int. J. Green Pharm. 2011, 5, 161. DOI: 10.4103/0973-8258.91221.
  • Chen, Q.-X.; Kubo, I. Kinetics of Mushroom Tyrosinase Inhibition by Quercetin. J. Agric. Food Chem. 2002, 50, 4108–4112. DOI: 10.1021/jf011378z.
  • Jakimiuk, K.; Sari, S.; Milewski, R.; Supuran, C. T.; Şöhretoğlu, D.; Tomczyk, M. Flavonoids as Tyrosinase Inhibitors in in Silico and in Vitro Models: Basic Framework of SAR Using a Statistical Modelling Approach. J. Enzyme Inhib. Med. Chem. 2022, 37, 421–430. DOI: 10.1080/14756366.2021.2014832.
  • Vicentini, F.; Simi, T. R. M.; Del Ciampo, J. O.; Wolga, N. O.; Pitol, D. L.; Iyomasa, M. M.; Bentley, M.; Fonseca, M. J. V. Quercetin in w/o Microemulsion: In Vitro and in Vivo Skin Penetration and Efficacy against UVB-Induced Skin Damages Evaluated in Vivo. Eur. J. Pharm. Biopharm. 2008, 69, 948–957. DOI: 10.1016/j.ejpb.2008.01.012.
  • Hatahet, T.; Morille, M.; Hommoss, A.; Devoisselle, J. M.; Müller, R. H.; Bégu, S. Quercetin Topical Application, from Conventional Dosage Forms to Nanodosage Forms. Eur. J. Pharm. Biopharm. 2016, 108, 41–53. DOI: 10.1016/j.ejpb.2016.08.011.
  • Ganesan, P.; Choi, D.-K. Current Application of Phytocompound-Based Nanocosmeceuticals for Beauty and Skin Therapy. Int. J. Nanomed. 2016, 11, 1987–2007. DOI: 10.2147/IJN.S104701.
  • Chen-yu, G.; Chun-fen, Y.; Qi-lu, L.; Qi, T.; Yan-wei, X.; Wei-na, L.; Guang-xi, Z. Z. Guang-xi, Development of a Quercetin-Loaded Nanostructured Lipid Carrier Formulation for Topical Delivery. Int. J. Pharm. 2012, 430, 292–298. DOI: 10.1016/j.ijpharm.2012.03.042.
  • Pivetta, T. P.; Silva, L. B.; Kawakami, C. M.; Araújo, M. M.; Del Lama, M.; Naal, R.; Maria-Engler, S. S.; Gaspar, L. R.; Marcato, P. D. Topical Formulation of Quercetin Encapsulated in Natural Lipid Nanocarriers: Evaluation of Biological Properties and Phototoxic Effect. J. Drug Deliv. Sci. Technol. 2019, 53, 101148. DOI: 10.1016/j.jddst.2019.101148.
  • Zorzi, G. K.; Caregnato, F.; Moreira, J. C. F.; Teixeira, H. F.; Carvalho, E. L. S. Antioxidant Effect of Nanoemulsions Containing Extract of Achyrocline Satureioides (Lam) D.C.-Asteraceae. AAPS PharmSciTech 2016, 17, 844–850. DOI: 10.1208/s12249-015-0408-8.
  • Fan, M.; Zhang, G.; Hu, X.; Xu, X.; Gong, D. Quercetin as a Tyrosinase Inhibitor: Inhibitory Activity, Conformational Change and Mechanism. Food Res. Int. 2017, 100, 226–233. DOI: 10.1016/j.foodres.2017.07.010.
  • Lin, T.-K.; Zhong, L.; Santiago, J. L. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2017, 19, 70. DOI: 10.3390/ijms19010070.
  • D'Angelo, S.; Ingrosso, D.; Migliardi, V.; Sorrentino, A.; Donnarumma, G.; Baroni, A.; Masella, L.; Tufano, M. A.; Zappia, M.; Galletti, P. Hydroxytyrosol, a Natural Antioxidant from Olive Oil, Prevents Protein Damage Induced by Long-Wave Ultraviolet Radiation in Melanoma Cells. Free Radicals Biol. Med. 2005, 38, 908–919. DOI: 10.1016/j.freeradbiomed.2004.12.015.
  • Jeon, S.; Choi, M. Anti-Inflammatory and anti-Aging Effects of Hydroxytyrosol on Human Dermal Fibroblasts (HDFs). Biomed. Dermatol. 2018, 2, 1–8. DOI: 10.1186/s41702-018-0031-x.
  • Bulotta, S.; Celano, M.; Lepore, S. M.; Montalcini, T.; Pujia, A.; Russo, D. Beneficial Effects of the Olive Oil Phenolic Components Oleuropein and Hydroxytyrosol: Focus on Protection against Cardiovascular and Metabolic Diseases. J. Transl. Med. 2014, 12, 219. DOI: 10.1186/s12967-014-0219-9.
  • Uchida, R.; Ishikawa, S.; Tomoda, H. Inhibition of Tyrosinase Activity and Melanine Pigmentation by 2-Hydroxytyrosol. Acta Pharm. Sin. B 2014, 4, 141–145. DOI: 10.1016/j.apsb.2013.12.008.
  • Wen, K.-C.; Chang, C.-S.; Chien, Y.-C.; Wang, H.-W.; Wu, W.-C.; Wu, C.-S.; Chiang, H.-M. Tyrosol and Its Analogues Inhibit Alpha-Melanocyte-Stimulating Hormone Induced Melanogenesis. Int. J. Mol. Sci. 2013, 14, 23420–23440. DOI: 10.3390/ijms141223420.
  • Kumar, M.; Bishnoi, R. S.; Shukla, A. K.; Jain, C. P. Techniques for Formulation of Nanoemulsion Drug Delivery System: A Review. Prev. Nutr. Food Sci. 2019, 24, 225–234. DOI: 10.3746/pnf.2019.24.3.225.
  • Anvisa. Validation of analytical methods. RDC 166/17, Brasília, DF, 2017.
  • FDA. Text on Validation of Analytical Procedures. https://bit.ly/2xFLU1g (accessed Apr 1, 2020).
  • Ebadi, P.; Fazeli, M. Anti-Photoaging Potential of Propolis Extract in UVB-Irradiated Human Dermal Fibroblasts through Increasing the Expression of FOXO3A and NGF Genes. Biomed. Pharmacother. 2017, 95, 47–54. DOI: 10.1016/j.biopha.2017.08.019.
  • Gaba, B.; Khan, T.; Haider, M. F.; Alam, T.; Baboota, S.; Parvez, S.; Ali, J. Vitamin E Loaded Naringenin Nanoemulsion via Intranasal Delivery for the Management of Oxidative Stress in a 6-OHDA Parkinson’s Disease Model. Biomed. Res. Int. 2019, 2019, 2382563. DOI: 10.1155/2019/2382563.
  • Makhafola, T. J.; Elgorashi, E. E.; McGaw, L. J.; Awouafack, M. D.; Verschaeve, L.; Eloff, J. N. Isolation and Characterization of the Compounds Responsible for the Antimutagenic Activity of Combretum Microphyllum (Combretaceae) Leaf Extracts. BMC Complement Altern. Med. 2017, 17, 446. DOI: 10.1186/s12906-017-1935-5.
  • Ko, R. K.; Kim, G.-O.; Hyun, C.-G.; Jung, D. S.; Lee, N. H. Compounds with Tyrosinase Inhibition, Elastase Inhibition and DPPH Radical Scavenging Activities from the Branches of Distylium Racemosum Sieb. et Zucc. Phytother. Res. 2011, 25, 1451–1456. DOI: 10.1002/ptr.3439.
  • Cui, H.-X.; Duan, F.-F.; Jia, S.-S.; Cheng, F.-R.; Yuan, K. Antioxidant and Tyrosinase Inhibitory Activities of Seed Oils from Torreya Grandis Fort. ex Lindl. Biomed. Res. Int. 2018, 2018, 5314320. DOI: 10.1155/2018/5314320.
  • Moonrungsee, N.; Shimamura, T.; Kashiwagi, T.; Jakmunee, J.; Higuchi, K.; Ukeda, H. Sequential Injection Spectrophotometric System for Evaluation of Mushroom Tyrosinase-Inhibitory Activity. Talanta 2012, 101, 233–239. DOI: 10.1016/j.talanta.2012.09.015.
  • Chen, W.-C.; Tseng, T.-S.; Hsiao, N.-W.; Lin, Y.-L.; Wen, Z.-H.; Tsai, C.-C.; Lee, Y.-C.; Lin, H.-H.; Tsai, K.-C. Discovery of Highly Potent Tyrosinase Inhibitor, T1, with Significant anti-Melanogenesis Ability by Zebrafish in Vivo Assay and Computational Molecular Modeling. Sci. Rep. 2015, 5, 7995. DOI: 10.1038/srep07995.
  • Kim, C. S.; Noh, S. G.; Park, Y.; Kang, D.; Chun, P.; Chung, H. Y.; Jung, H. J.; Moon, H. R. A Potent Tyrosinase Inhibitor, (E)-3-(2,4-Dihydroxyphenyl)-1-(Thiophen-2-yl)Prop-2-en-1-One, with Anti-Melanogenesis Properties in α-MSH and IBMX-Induced B16F10 Melanoma Cells. Molecules 2018, 23, 2725. DOI: 10.3390/molecules23102725.
  • Jung, H. J.; Noh, S. G.; Park, Y.; Kang, D.; Chun, P.; Chung, H. Y.; Moon, H. R. In Vitro and in Silico Insights into Tyrosinase Inhibitors with (E)-Benzylidene-1-Indanone Derivatives. Comput. Struct. Biotechnol. J. 2019, 17, 1255–1264. DOI: 10.1016/j.csbj.2019.07.017.
  • Luepke, N. P.; Kemper, F. H. The HET-CAM Test: An Alternative to the Draize Eye Test. Food Chem. Toxicol. 1986, 24, 495–496. DOI: 10.1016/0278-6915(86)90099-2.
  • Campos, P.; Benevenuto, C. G.; Calixto, L. S.; Melo, M. O.; Pereira, K. C.; Gaspar, L. R. Spirulina, Palmaria Palmata, Cichorium Intybus, and Medicago Sativa Extracts in Cosmetic Formulations: An Integrated Approach of in Vitro Toxicity and in Vivo Acceptability Studies. Cutaneous Ocul. Toxicol. 2019, 38, 322–329. DOI: 10.1080/15569527.2019.1579224.
  • Rangel, K. C.; Villela, L. Z.; de, K.; Pereira, C.; Colepicolo, P.; Debonsi, H. M.; Gaspar, L. R. Assessment of the Photoprotective Potential and Toxicity of Antarctic Red Macroalgae Extracts from Curdiea Racovitzae and Iridaea Cordata for Cosmetic Use. Algal Res. 2020, 50, 101984. DOI: 10.1016/j.algal.2020.101984.
  • Bajerski, L.; Michels, L. R.; Colomé, L. M.; Bender, E. A.; Freddo, R. J.; Bruxel, F.; Haas, S. E. The Use of Brazilian Vegetable Oils in Nanoemulsions: An Update on Preparation and Biological Applications, Braz. J. Pharm. Sci. 2016, 52, 347–363. DOI: 10.1590/s1984-82502016000300001.
  • Che Marzuki, N. H.; Wahab, R. A.; Abdul Hamid, M. An Overview of Nanoemulsion: Concepts of Development and Cosmeceutical Applications. Biotechnol. Biotechnol. Equip. 2019, 33, 779–797. DOI: 10.1080/13102818.2019.1620124.
  • Hougeir, F. G.; Kircik, L. A Review of Delivery Systems in Cosmetics. Dermatol. Ther. 2012, 25, 234–237. DOI: 10.1111/j.1529-8019.2012.01501.x.
  • de, R. C.; Ribeiro, A.; de, S. M.; Barreto, A. G.; Ostrosky, E. A.; da Rocha -Filho, P. A.; Veríssimo, L. M.; Ferrari, M. Production and Characterization of Cosmetic Nanoemulsions Containing Opuntia Ficus-Indica (L.) Mill Extract as Moisturizing Agent. Molecules 2015, 20, 2492–2509. DOI: 10.3390/molecules20022492.
  • Yadav, P.; Rastogi, V.; Verma, A. Application of Box–Behnken Design and Desirability Function in the Development and Optimization of Self-Nanoemulsifying Drug Delivery System for Enhanced Dissolution of Ezetimibe. Future J. Pharm. Sci. 2020, 6, 7. DOI: 10.1186/s43094-020-00023-3.
  • Mehmood, T.; Ahmad, A.; Ahmed, A.; Ahmed, Z. Optimization of Olive Oil Based O/W Nanoemulsions Prepared through Ultrasonic Homogenization: A Response Surface Methodology Approach. Food Chem. 2017, 229, 790–796. DOI: 10.1016/j.foodchem.2017.03.02.
  • Gupta, A.; Eral, H. B.; Hatton, T. A.; Doyle, P. S. Nanoemulsions: Formation, Properties and Applications. Soft Matter 2016, 12, 2826–2841. DOI: 10.1039/c5sm02958a.
  • Nastiti, C.; Ponto, T.; Abd, E.; Grice, J. E.; Benson, H. A. E.; Roberts, M. S. Topical Nano and Microemulsions for Skin Delivery. Pharmaceutics 2017, 9, 37. DOI: 10.3390/pharmaceutics9040037.
  • Fukuda, I. M.; Pinto, C. F. F.; Moreira, CdS.; Saviano, A. M.; Lourenço, F. R. Design of Experiments (DoE) Applied to Pharmaceutical and Analytical Quality by Design (QbD). Braz. J. Pharm. Sci. 2018, 54(Special): e01006. DOI: 10.1590/s2175-97902018000001006.
  • Lu, W.-C.; Chiang, B.-H.; Huang, D.-W.; Li, P.-H. Skin Permeation of D-Limonene-Based Nanoemulsions as a Transdermal Carrier Prepared by Ultrasonic Emulsification. Ultrason. Sonochem. 2014, 21, 826–832. DOI: 10.1016/j.ultsonch.2013.10.013.
  • Dalmolin, L. F.; Lopez, R. F. V. Nanoemulsion as a Platform for Iontophoretic Delivery of Lipophilic Drugs in Skin Tumors. Pharmaceutics 2018, 10, 214. DOI: 10.3390/pharmaceutics10040214.
  • Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57–17. DOI: 10.3390/pharmaceutics10020057.
  • Rodrigues, F.; Diniz, L.; Sousa, R.; Honorato, T.; Simão, D.; Araújo, C.; Gonçalves, T.; Rolim, L.; Goto, P.; Tedesco, A. M. Siqueira-Moura, Preparation and Characterization of Nanoemulsion Containing a Natural Naphthoquinone. Quím. Nova 2018, 41, 756–761. DOI: 10.21577/0100-4042.20170247.
  • Ren, J.-N.; Dong, M.; Hou, Y.-Y.; Fan, G.; Pan, S.-Y. Effect of Olive Oil on the Preparation of Nanoemulsions and Its Effect on Aroma Release. J. Food Sci. Technol. 2018, 55, 4223–4231. DOI: 10.1007/s13197-018-3358-9.
  • Srinivas, K.; King, J. W.; Howard, L. R.; Monrad, J. K. Solubility and Solution Thermodynamic Properties of Quercetin and Quercetin Dihydrate in Subcritical Water. J. Food Eng. 2010, 100, 208–218. [Database] DOI: 10.1016/j.jfoodeng.2010.04.001.
  • Elfiyani, R.; Amalia, A.; Pratama, S. Y. Effect of Using the Combination of Tween 80 and Ethanol on the Forming and Physical Stability of Microemulsion of Eucalyptus Oil as Antibacterial. J. Young Pharm. 2017, 9, s1–s4. DOI: 10.5530/jyp.2017.1s.1.
  • Mohamadi Saani, S.; Abdolalizadeh, J.; Heris, S. Z. Ultrasonic/Sonochemical Synthesis and Evaluation of Nanostructured Oil in Water Emulsions for Topical Delivery of Protein Drugs. Ultrason. Sonochem. 2019, 55, 86–95. DOI: 10.1016/j.ultsonch.2019.03.018.
  • Ding, Z.; Jiang, Y.; Liu, X. Nanoemulsions-based drug delivery for brain tumors. In Nanotechnology-based targeted drug delivery systems for brain tumors. Academic Press (Elsevier): London, UK, 2018, pp. 327-358. DOI:10.1016/B978-0-12-812218-1.00012-9.
  • Bourbon, A. I.; Gonçalves, R. F. S.; Vicente, A. A.; Pinheiro, A.C. Characterization of Particle Properties in Nanoemulsions. Academic Press (Elsevier): London, UK, 2018, pp 519-546. DOI:10.1016/B978-0-12-811838-2.00016-3.
  • Bourgeois, C.; Leclerc, É. A.; Corbin, C.; Doussot, J.; Serrano, V.; Vanier, J.-R.; Seigneuret, J.-M.; Auguin, D.; Pichon, C.; Lainé, É.; Hano, C. Nettle (Urtica Dioica L.) as a Source of Antioxidant and anti-Aging Phytochemicals for Cosmetic Applications. CR. Chim. 2016, 19, 1090–1100. DOI: 10.1016/j.crci.2016.03.019.
  • Sokół-Łętowska, A.; Oszmiański, J.; Wojdyło, A. Antioxidant Activity of the Phenolic Compounds of Hawthorn, Pine and Skullcap. Food Chem. 2007, 103, 853–859. DOI: 10.1016/j.foodchem.2006.09.036.
  • Zeng, Y.; Song, J.; Zhang, M.; Wang, H.; Zhang, Y.; Suo, H. Comparison of In Vitro and In Vivo Antioxidant Activities of Six Flavonoids with Similar Structures. Antioxidants (Basel) 2020, 9, 732. DOI: 10.3390/antiox9080732.
  • Vinardell, M. P.; Mitjans, M. Nanocarriers for Delivery of Antioxidants on the Skin. Cosmetics 2015, 2, 342–354. DOI: 10.3390/cosmetics2040342.
  • Casanova, F.; Santos, L. Encapsulation of Cosmetic Active Ingredients for Topical Application-a Review. J. Microencapsul. 2016, 33, 1–17. DOI: 10.3109/02652048.2015.1115900.
  • Kumari, A.; Yadav, S. K.; Pakade, Y. B.; Singh, B.; Yadav, S. C. Development of Biodegradable Nanoparticles for Delivery of Quercetin. Colloids Surf. B Biointerfaces 2010, 80, 184–192. DOI: 10.1016/j.colsurfb.2010.06.002.
  • Milanezi, F. G.; Meireles, L. M.; de Christo Scherer, M. M.; de Oliveira, J. P.; da Silva, A. R.; de Araujo, M. L.; Endringer, D. C.; Fronza, M.; Guimarães, M. C. C.; Scherer, R. Antioxidant, Antimicrobial and Cytotoxic Activities of Gold Nanoparticles Capped with Quercetin. Saudi Pharm. J. 2019, 27, 968–974. DOI: 10.1016/j.jsps.2019.07.005.
  • Souto, E. B.; Fangueiro, J. F.; Fernandes, A. R.; Cano, A.; Sanchez-Lopez, E.; Garcia, M. L.; Severino, P.; Paganelli, M. O.; Chaud, M. V.; Silva, A. M. Physicochemical and Biopharmaceutical Aspects Influencing Skin Permeation and Role of SLN and NLC for Skin Drug Delivery. Heliyon 2022, 8, e08938. DOI: 10.1016/j.heliyon.2022.e08938.
  • Zuo, A.-R.; Dong, H.-H.; Yu, Y.-Y.; Shu, Q.-L.; Zheng, L.-X.; Yu, X.-Y.; Cao, S.-W. The Antityrosinase and Antioxidant Activities of Flavonoids Dominated by the Number and Location of Phenolic Hydroxyl Groups. Chin. Med. 2018, 13, 51. DOI: 10.1186/s13020-018-0206-9.
  • Zhu, F.; Asada, T.; Sato, A.; Koi, Y.; Nishiwaki, H.; Tamura, H. Rosmarinic Acid Extract for Antioxidant, Antiallergic, and α-Glucosidase Inhibitory Activities, Isolated by Supramolecular Technique and Solvent Extraction from Perilla Leaves. J. Agric. Food Chem. 2014, 62, 885–892. DOI: 10.1021/jf404318j.
  • Zolghadri, S.; Bahrami, A.; Hassan Khan, M. T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A. A. A Comprehensive Review on Tyrosinase Inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34, 279–309. DOI: 10.1080/14756366.2018.1545767.
  • Panzella, L.; Napolitano, A. Natural and Bioinspired Phenolic Compounds as Tyrosinase Inhibitors for the Treatment of Skin Hyperpigmentation: Recent Advances. Cosmetics 2019, 6, 57. DOI: 10.3390/cosmetics6040057.
  • Solimine, J.; Garo, E.; Wedler, J.; Rusanov, K.; Fertig, O.; Hamburger, M.; Atanassov, I.; Butterweck, V. Tyrosinase Inhibitory Constituents from a Polyphenol Enriched Fraction of Rose Oil Distillation Wastewater. Fitoterapia 2016, 108, 13–19. DOI: 10.1016/j.fitote.2015.11.012.
  • Lu, B.; Huang, Y.; Chen, Z.; Ye, J.; Xu, H.; Chen, W.; Long, X. Niosomal Nanocarriers for Enhanced Skin Delivery of Quercetin with Functions of Anti-Tyrosinase and Antioxidant. Molecules 2019, 24, 2322. DOI: 10.3390/molecules24122322.
  • Wu, P.-S.; Lin, C.-H.; Kuo, Y.-C.; Lin, C.-C. Formulation and Characterization of Hydroquinone Nanostructured Lipid Carriers by Homogenization Emulsification Method. J. Nanomater. 2017, 2017, 1–7. DOI: 10.1155/2017/3282693.
  • Teixeira, R.; da, S.; Rocha, P. R.; Polonini, H. C.; Brandão, M. A. F.; Chaves, M.; das, G. A. M.; Raposo, N. R. B. Mushroom Tyrosinase Inhibitory Activity and Major Fatty Acid Constituents of Amazonian Native Flora Oils. Braz. J. Pharm. Sci. 2012, 48, 399–404. DOI: 10.1590/S1984-82502012000300006.
  • OECD. Guidance Document on an Integrated Approach on Testing and Assessment (IATA) for Serious Eye Damage and Eye Irritation. Organisation for Economic Cooperation and Development, Series on Testing & Assessment. 2017, 263. https://bit.ly/3emhtix. (accessed Apr 20, 2021)
  • Hayashi, K.; Mori, T.; Abo, T.; Ooshima, K.; Hayashi, T.; Komano, T.; Takahashi, Y.; Sakaguchi, H.; Takatsu, A.; Nishiyama, N. Two-Stage Bottom-up Tiered Approach Combining Several Alternatives for Identification of Eye Irritation Potential of Chemicals Including Insoluble or Volatile Substances. Toxicol. In Vitro 2012, 26, 1199–1208. DOI: 10.1016/j.tiv.2012.06.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.