118
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Preparation and migration study of multi-walled carbon nanotube hybrid polymer gel particles: EOR implication

, , , &
Pages 15-25 | Received 08 Jun 2022, Accepted 11 Sep 2022, Published online: 23 Sep 2022

Reference

  • Yuan, S.; Wang, Q. New Progress and Prospect of Oilfields Development Technologies in China. Petrol. Explor. Dev. 2018, 45, 698–711. DOI: 10.1016/S1876-3804(18)30073-9.
  • Yang, Y.; Yang, H.; Tao, L.; Yao, J.; Wang, W.; Zhang, K.; Luquot, L. Microscopic Determination of Remaining Oil Distribution in Sandstones with Different Permeability Scales Using Computed Tomography Scanning. J. Energy Resour. ASME 2019, 141, 092903. DOI: 10.1115/1.4043131.
  • Afekare, D. A.; Radonjic, M. From Mineral Surfaces and Coreflood Experiments to Reservoir Implementations: Comprehensive Review of Low-Salinity Water Flooding (LSWF). Energy Fuels 2017, 31, 13043–13062. DOI: 10.1021/acs.energyfuels.7b02730.
  • Tang, X.; Zhang, B.; Höök, M.; Feng, L. Forecast of Oil Reserves and Production in Daqing Oilfield of China. Energy 2010, 35, 3097–3102. DOI: 10.1016/j.energy.2010.03.043.
  • Zhou, Z.; Zhao, J.; Zhou, T.; Huang, Y. Study on in-Depth Profile Control System of Low-Permeability Reservoir in Block H of Daqing Oil Field. J. Petrol. Sci. Eng. 2017, 157, 1192–1196. DOI: 10.1016/j.petrol.2017.08.008.
  • Yang, H.; Kang, W.; Yu, Y.; Yin, X.; Wang, P.; Zhang, X. A New Approach to Evaluate the Particle Growth and Sedimentation of Dispersed Polymer Microsphere Profile Control System Based on Multiple Light Scattering. Powder Technol. 2017, 315, 477–485. DOI: 10.1016/j.powtec.2017.04.001.
  • Wang, L.; Xia, H.; Han, P.; Cao, R.; Xu, T.; Li, W.; Zhang, H.; Zhang, S. Synthesis of New PPG and Study of Heterogeneous Combination Flooding Systems. J. Disper. Sci. Technol. 2022, 43, 164–177. DOI: 10.1080/01932691.2020.1845719.
  • Chen, X.; Li, Y.; Liu, Z.; Zhang, J.; Chen, C.; Ma, M. Investigation on Matching Relationship and Plugging Mechanism of Self-Adaptive Micro-Gel (SMG) as a Profile Control and Oil Displacement Agent. Powder Technol. 2020, 364, 774–784. DOI: 10.1016/j.powtec.2020.02.027.
  • Wang, C.; Zhong, L.; Liu, Y.; Han, Y.; Zhao, P.; Yuan, Y.; Han, X. Characteristics of Weak-Gel Flooding and Its Application in LD10-1 Oilfield. ACS Omega 2020, 5, 24935–24945. DOI: 10.1021/acsomega.0c03762.
  • Zhou, R.; Zhang, D.; Wei, J. Experiment on the Profile Control Effect of Different Strength Gel Systems in Heterogeneous Reservoir. Energy Rep. 2021, 7, 6023–6030. DOI: 10.1016/j.egyr.2021.09.060.
  • Zhao, G.; Dai, C.; Chen, A.; Yan, Z.; Zhao, M. Experimental Study and Application of Gels Formed by Nonionic Polyacrylamide and Phenolic Resin for in-Depth Profile Control. J. Petrol. Sci. Eng. 2015, 135, 552–560. [Database] DOI: 10.1016/j.petrol.2015.10.020.
  • Wang, D.; Seright, R. Examination of Literature on Colloidal Dispersion Gels for Oil Recovery. Petrol Sci 2021, 18, 1097–1114. DOI: 10.1016/j.petsci.2021.07.009.
  • Rozhkova, Y.; Burin, D.; Galkin, S.; Yang, H. Review of Microgels for Enhanced Oil Recovery: Properties and Cases of Application. Gels 2022, 8, 112. DOI: 10.3390/gels8020112.
  • Cao, W.; Xie, K.; Cao, B.; Lu, X.; Tian, Z. Inorganic Gel Enhanced Oil Recovery in High Temperature Reservoir. J. Petrol Sci. Eng. 2021, 196, 107691. DOI: 10.1016/j.petrol.2020.107691.
  • Ji, J.; Zeng, C.; Ke, Y.; Pei, Y. Preparation of Poly (Acrylamide-co-Acrylic Acid)/Silica Nanocomposite Microspheres and Their Performance as a Plugging Material for Deep Profile Control. J. Appl. Polym. Sci. 2017, 134, 45502. DOI: 10.1002/app.45502.
  • Haiyan, J.; Shibao, Y.; Ting, W.; Pengfei, M.; Li, J.; Kunmeng, L.; Hong, Z. Profile Control Technology by Inorganic Salt out under High-Temperature Conditions for Preventing Fire Flooding Gas Channeling. Petrol. Sci. Technol. 2015, 33, 1157–1164. DOI: 10.1080/10916466.2015.1057594.
  • Farasat, A.; Sefti, M.; Sadeghnejad, S.; Saghafi, H. Mechanical Entrapment Analysis of Enhanced Preformed Particle Gels (PPGs) in Mature Reservoirs. J. Petrol. Sci. Eng. 2017, 157, 441–450. DOI: 10.1016/j.petrol.2017.07.028.
  • Esfahlan, M.; Khodapanah, E.; Tabatabaei-Nezhad, S. Comprehensive Review on the Research and Field Application of Preformed Particle Gel Conformance Control Technology. J. Petrol. Sci. Eng. 2021, 202, 108440. DOI: 10.1016/j.petrol.2021.108440.
  • Du, D.; Pu, W.; Zhang, S.; Jin, F.; Wang, S.; Ren, F. Preparation and Migration Study of Graphene Oxide-Grafted Polymeric Microspheres: EOR Implications. J. Petrol. Sci. Eng. 2020, 192, 107286. DOI: 10.1016/j.petrol.2020.107286.
  • Du, D.; Pu, W.; Jin, F.; Hou, D.; Shi, L. Experimental Investigation on Plugging and Transport Characteristics of Pore-Scale Microspheres in Heterogeneous Porous Media for Enhanced Oil Recovery. J. Disper. Sci. Technol. 2021, 42, 1152–1162. DOI: 10.1080/01932691.2020.1729796.
  • Gao, Q.; Zhong, C.; Han, P.; Gao, R.; Jiang, G. Synergistic Effect of Alkali–Surfactant–Polymer and Preformed Particle Gel on Profile Control after Polymer Flooding in Heterogeneous Reservoirs. Energy Fuels 2020, 34, 15957–15968. DOI: 10.1021/acs.energyfuels.0c02660.
  • Sun, L.; Li, D.; Pu, W.; Li, L.; Bai, B.; Han, Q.; Zhang, Y.; Tang, X. Combining Preformed Particle Gel and Curable Resin-Coated Particles to Control Water Production from High-Temperature and High-Salinity Fractured Producers. Spe J. 2020, 25, 938–950. DOI: 10.2118/198887-PA.
  • Pu, W.; Du, D.; Fan, H.; Chen, B.; Yuan, C.; Varfolomeev, M. CO2-Responsive Preformed Gel Particles with Interpenetrating Networks for Controlling CO2 Breakthrough in Tight Reservoirs. Colloid Surface A 2021, 613, 126065. DOI: 10.1016/j.colsurfa.2020.126065.
  • Yu, B.; Zhao, S.; Long, Y.; Bai, B.; Schuman, T. Comprehensive Evaluation of a High-Temperature Resistant Re-Crosslinkable Preformed Particle Gel for Water Management. Fuel 2022, 309, 122086. DOI: 10.1016/j.fuel.2021.122086.
  • Esfahlan, M.; Khodapanah, E.; Tabatabaei-Nezhad, S. Salami-Kalajahi, M. Fabrication, Optimization and Characterization of Preformed-Particle-Gel Containing Nanogel Particles for Conformance Control in Oil Reservoirs. Polym. Bull. 2021, 79, 1–23.
  • Ketova, Y.; Galkin, S.; Kolychev, I. Evaluation and X-Ray Tomography Analysis of Super-Absorbent Polymer for Water Management in High Salinity Mature Reservoirs. J. Petrol. Sci. Eng. 2021, 196, 107998. DOI: 10.1016/j.petrol.2020.107998.
  • Fang, J.; Zhao, G.; Zhao, M.; Dai, C. New Channel Flow Control Agent for High-Temperature and High-Salinity Fractured-Vuggy Carbonate Reservoirs. Energy Source Part A 2019, 43, 1–12.
  • L.; G.; Fu, M.; Li, X.; Hu, J. A Study of the Thin Film-Coated Swelling Retarding Particles in Fractured Carbonate Reservoirs for Water Plugging and Profile Control. Energies 2022, 15, 1085.
  • Kinloch, I.; Suhr, J.; Lou, J.; Young, R.; Ajayan, P. Composites with Carbon Nanotubes and Graphene: An Outlook. Science 2018, 362, 547–553. DOI: 10.1126/science.aat7439.
  • Fiyadh, S. S.; AlSaadi, M. A.; Jaafar, W. Z.; AlOmar, M. K.; Fayaed, S. S.; Mohd, N. S.; Hin, L. S.; El-Shafie, A. Review on Heavy Metal Adsorption Processes by Carbon Nanotubes. J. Clean. Prod. 2019, 230, 783–793. DOI: 10.1016/j.jclepro.2019.05.154.
  • Takakura, A.; Beppu, K.; Nishihara, T.; Fukui, A.; Kozeki, T.; Namazu, T.; Miyauchi, Y.; Itami, K. Strength of Carbon Nanotubes Depends on Their Chemical Structures. Nat. Commun. 2019, 10, 1–7. DOI: 10.1038/s41467-019-10959-7.
  • Wieland, L.; Li, H.; Rust, C.; Chen, J.; Flavel, B. Carbon Nanotubes for Photovoltaics: From Lab to Industry. Adv. Energy Mater. 2021, 11, 2002880. DOI: 10.1002/aenm.202002880.
  • Gupta, N.; Gupta, S.; Sharma, S. Carbon Nanotubes: Synthesis, Properties and Engineering Applications. Carbon Lett. 2019, 29, 419–447. DOI: 10.1007/s42823-019-00068-2.
  • Papageorgiou, D.; Li, Z.; Liu, M.; Kinloch, I.; Young, R. Mechanisms of Mechanical Reinforcement by Graphene and Carbon Nanotubes in Polymer Nanocomposites. Nanoscale 2020, 12, 2228–2267. DOI: 10.1039/C9NR06952F.
  • Pu, W.; Jiang, F.; He, Y.; Wei, B.; Tang, Y. Synthesis of a Novel Comb Micro-Block Hydrophobically Associating Copolymer for Ca2+/Mg2+ Resistance. RSC Adv. 2016, 6, 43634–43637. DOI: 10.1039/C6RA07110D.
  • Paz, E.; Ballesteros, Y.; Forriol, F.; Dunne, N.; del Real, J. Graphene and Graphene Oxide Functionalisation with Silanes for Advanced Dispersion and Reinforcement of PMMA-Based Bone Cements. Mat. Sci. Eng. 2019, 104, 109946. DOI: 10.1016/j.msec.2019.109946.
  • Pu, W.; Zhao, S.; Wang, S.; Wei, B.; Yuan, C.; Li, Y. Investigation into the Migration of Polymer Microspheres (PMs) in Porous Media: Implications for Profile Control and Oil Displacement. Colloid Surfaces A 2018, 540, 265–275. DOI: 10.1016/j.colsurfa.2018.01.018.
  • Du, D.; Pu, W.; Tang, Z.; Liu, R.; Han, S.; Zhang, W.; Zhao, B.; Wei, J. Solution Properties and Displacement Characteristics of Core–Shell Hyperbranched Associative Polyacrylamide for Enhanced Oil Recovery. Energy Fuels 2018, 32, 8154–8166. DOI: 10.1021/acs.energyfuels.8b01411.
  • Salunkhe, B.; Schuman, T.; Al Brahim, A.; Bai, B. Ultra-High Temperature Resistant Preformed Particle Gels for Enhanced Oil Recovery. Chem. Eng. J. 2021, 426, 130712. DOI: 10.1016/j.cej.2021.130712.
  • Hoffman, R. Factors Affecting the Viscosity of Unimodal and Multimodal Colloidal Dispersions. J. Rheol. 1992, 36, 947–965. DOI: 10.1122/1.550324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.