122
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effective removal of highly toxic Pb2+ and Cd2+ ions using reduced graphene oxide, polythiophene, and silica-based nanocomposite

, , &
Pages 58-67 | Received 27 May 2022, Accepted 16 Sep 2022, Published online: 28 Sep 2022

References

  • Joshi, N. C.; Gururani, P. Advances of Graphene Oxide Based Nanocomposite Materials in the Treatment of Wastewater Containing Heavy Metal Ions and Dyes. Curr. Res. Green Sustain. Chem. 2022, 5, 100306. DOI: 10.1016/j.crgsc.2022.100306.
  • Yakout, A. A.; Shaker, M. A.; Elwakeel, K. Z.; Alshitari, W. Lauryl Sulfate@Magnetic Graphene Oxide Nanosorbent for Fast Methylene Blue Recovery from Aqueous Solutions. J. Disper. Sci. Technol. 2019, 40, 707–715. DOI: 10.1080/01932691.2018.1477604.
  • Ghosh, D.; Kumari, S.; Majumder, S. Role of Graphene Oxide Based Nanocomposites in Arsenic Purification from Ground Water. In Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications; Shalan, A. E., Hamdy Makhlouf, A. S., Lanceros‐Méndez, S., Eds.; Springer: Cham. 2022, 369–388. DOI: 10.1007/978-3-030-94319-6_12.
  • Abu-Nada, A.; Mckay, G.; Abdala, A. Recent Advances in Applications of Hybrid Graphene Materials for Metals Removal from Wastewater. Nanomaterials 2020, 10, 595. DOI: 10.3390/nano10030595.
  • Kaloni, T. P.; Giesbrecht, P. K.; Schreckenbach, G.; Freund, M. S. Polythiophene: From Fundamental Perspectives to Applications. Chem. Mater. 2017, 29, 10248–10283. DOI: 10.1021/acs.chemmater.7b03035.
  • Kumar, N.; Joshi, N. C. Potential of PTH-Fe3O4 Based Nanomaterial for the Removal of Pb (II), Cd (II), and Cr (VI) Ions. J Inorg. Organomet. Polym. 2022, 32, 1234–1245. DOI: 10.1007/s10904-021-02173-0.
  • Jeelani, P. G.; Mulay, P.; Venkat, R.; Ramalingam, C. Multifaceted Application of Silica Nanoparticles: A Review. Silicon 2020, 12, 1337–1354. DOI: 10.1007/s12633-019-00229-y.
  • Mitra, S.; Chakraborty, A. J.; Tareq, A. M.; Emran, T. B.; Nainu, F.; Khusro, A.; Idris, A. M.; Khandaker, M. U.; Osman, H.; Alhumaydhi, F. A.; Simal-Gandara, J. Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. J. King Saud. Univ.– Sci. 2022, 34, 101865. DOI: 10.1016/j.jksus.2022.101865.
  • Wani, A. L.; Ara, A.; Usmani, J. A. Lead Toxicity: A Review. Interdiscip. Toxicol. 2015, 8, 55–64. DOI: 10.1515/intox-2015-0009.
  • Rahimzadeh, R.; Rahimzadeh, M. R.; Kazemi, M.; Moghadamnia, A. A. Cadmium Toxicity and Treatment: An Update. Caspian J. Intern. Med. 2017, 8, 135–145. DOI: 10.22088/cjim.8.3.135.
  • Joshi, N. C.; Singh, A. Adsorptive Performances and Characterisations of Biologically Synthesised Zinc Oxide Based Nanosorbent (ZOBN). Groundw. Sustain. Dev. 2020, 10, 100325. DOI: 10.1016/j.gsd.2019.100325.
  • K.; Z.; Elwakeel. Environmental Application of Chitosan Resins for the Treatment of Water and Wastewater: A Review. J. Disper. Sci. Technol. 2010, 31, 273–288. DOI: 10.1080/01932690903167178.
  • Elgarahy, A. M.; Elwakeel, K. Z.; Mohammad, S. H.; Elshoubaky, G. A. A Critical Review of Biosorption of Dyes, Heavy Metals and Metalloids from Wastewater as an Efficient and Green Process. Cleaner Eng. Technol. 2021, 4, 100209. DOI: 10.1016/j.clet.2021.100209.
  • Chakraborty, R.; Asthana, A.; Singh, A. K.; Jain, B.; Susan, A. B. H. Adsorption of Heavy Metal Ions by Various Low-Cost Adsorbents: A Review. Int. J. Environ. Analyt. Chem. 2022, 102, 342–379. DOI: 10.1080/03067319.2020.1722811.
  • Joshi, N. C. Synthesis of r-GO/PANI/ZnO Based Material and Its Application in the Treatment of Wastewater Containing Cd2+ and Cr6+ Ions. Separation Sci. Technol. 2022, 57, 2420–2431. DOI: 10.1080/01496395.2022.2069042.
  • Ramadan, R.; Abdel-Aal, S. K. Facile Synthesis of Nanostructured ZnO–rGO Based Graphene and Its Application in Wastewater Treatment. J. Mater. Sci.: Mater. Electron. 2021, 32, 19667–19675. DOI: 10.1007/s10854-021-06489-y.
  • Hoan, N. T. V.; Thu, N. T. A.; Duc, H. V.; Cuong, N. D.; Khieu, D. Q.; Vo, V. Fe3O4/Reduced Graphene Oxide Nanocomposite: synthesis and Its Application for Toxic Metal Ion Removal. J. Chem. 2016, 2016, 1–10. DOI: 10.1155/2016/2418172.
  • Kumari, V.; Kaushal, S.; Singh, P. P. Green Synthesis of a CuO/rGO Nanocomposite Using a Terminalia Arjuna Bark Extract and Its Catalytic Activity for the Purification of Water. Mater. Adv. 2022, 3, 2170–2184. DOI: 10.1039/D1MA00993A.
  • Mnyipika, S. H.; Munonde, T. S.; Nomngongo, P. N. MnO2@Reduced Graphene Oxide Nanocomposite-Based Electrochemical Sensor for the Simultaneous Determination of Trace Cd(II), Zn(II) and Cu(II) in Water Samples. Membranes 2021, 11, 517. DOI: 10.3390/membranes11070517.
  • Saravanan, S.; Dubey, R. S. Synthesis of SiO2 Nanoparticles by Sol-Gel Method and Their Optical and Structural Properties. Roman. J. Inform. Sci. Technol. 2020, 23, 105–112.
  • Panwar, K.; Jassal, M.; Agrawal, A. K. In Situ Synthesis of Ag–SiO2 Janus Particles with Epoxy Functionality for Textile Applications. Particuology 2015, 19, 107–112. DOI: 10.1016/j.partic.2014.06.007.
  • Vinoda, B. M.; Vinuth, M.; Bodke, Y. D.; Manjanna, J. Photocatalytic Degradation of Toxic Methyl Red Dye Using Silica Nanoparticles Synthesized from Rice Husk Ash. J. Environ. Anal. Toxicol. 2015, 5, 1000336. DOI: 10.4172/2161-0525.1000336.
  • Joshi, N. C.; Malik, N.; Singh, A. Synthesis and Characterizations of Polythiophene–Al2O3 Based Nanosorbent and Its Applications in the Removal of Pb2+, Cd2+ and Zn2+ Ions. J. Inorg. Organomet. Polym. 2020, 30, 1438–1447. DOI: 10.1007/s10904-019-01252-7.
  • Emiru, T. F.; Ayele, B. W. Controlled Synthesis, Characterization and Reduction of Graphene Oxide: A Convenient Method for Large Scale Production. Egyptian J. Basic Appl. Sci. 2017, 4, 74–79. DOI: 10.1016/j.ejbas.2016.11.002.
  • Sun, J.; Xu, Z.; Li, W.; Shen, X. Effect of nano-SiO2 on the Early Hydration of Alite-Sulphoaluminate Cement. Nanomaterials 2017, 7, 102. DOI: 10.3390/nano7050102.
  • Maleki, A.; Pajootan, E.; Hayati, B. Ethyl Acrylate Grafted Chitosan for Heavy Metal Removal from Wastewater: Equilibrium, Kinetic and Thermodynamic Studies. J. Taiwan Inst. Chem. Eng. 2015. DOI: 10.1016/j.jtice.2015.01.004.
  • Joshi, N. C.; Kumar, N. Synthesis, Characterisation and Adsorption Applications of PMMA/ZnO‑Based Nanocomposite Material. Nanotechnol. Environ. Eng. 2022, 7, 425–436. DOI: 10.1007/s41204-021-00205-1.
  • Gusain, R.; Kumar, N.; Fosso-Kankeu, E.; Ray, S. S. Efficient Removal of Pb(II) and Cd(II) from Industrial Mine Water by a Hierarchical MoS2/SH-MWCNT Nanocomposite. ACS Omega 2019, 4, 13922–13935. DOI: 10.1021/acsomega.9b01603.
  • Ramesh, S. T.; Rameshbabu, N.; Gandhimathi, R.; Srikanth Kumar, M.; Nidheesh, P. V. Adsorptive Removal of Pb(II) from Aqueous Solution Using Nano-Sized Hydroxyapatite. Appl. Water Sci. 2013, 3, 105–113. DOI: 10.1007/s13201-012-0064-z.
  • Ahmad, R.; Haseeb, S. Adsorption of Pb (II) on Mentha Piperita Carbon (MTC) in Single and Quaternary Systems. Arabian J. Chem. 2017, 10, S412–S421. DOI: 10.1016/j.arabjc.2012.09.013.
  • Joshi, N. C.; Malik, S.; Gururani, P. Utilisation of Polypyrrole/ZnO Nanocomposite in the Removal of Cu2+, Pb2+ and Cd2+ Ions from Waste Water. Letters Appl. Nano Biosci. 2021, 10, 2339–2351. DOI: 10.33263/LIANBS103.23392351.
  • Zhang, M.; Yin, Q.; Ji, X.; Wang, F.; Gao, X.; Zhao, M. High and Fast Adsorption of Cd(II) and Pb(II) Ions from Aqueous Solutions by a Waste Biomass Based Hydrogel. Sci. Rep. 2020, 10, 3285. DOI: 10.1038/s41598-020-60160-w.
  • Joshi, N. C.; Raymond; Gururani, P. Synthesis, Adsorptive Performances and Photo-Catalytic Activity of Graphene Oxide/TiO2 (GO/TiO2) Nanocomposite Based Adsorbent. Nanotech. Environ. Eng. 2020, DOI: 10.1007/s41204-020-00085-x.
  • Igberase, E.; Osifo, P.; Ofomaja, A. The Adsorption of Pb, Zn, Cu, Ni, and Cd by Modified Ligand in a Single Component Aqueous Solution: Equilibrium, Kinetic, Thermodynamic, and Desorption Studies. Int. J. Analy. Chem. 2017, 2017, 1–15. DOI: 10.1155/2017/6150209.
  • Nguyen, T. C.; Loganathan, P.; Nguyen, T. V.; Kandasamy, J.; Naidu, R.; Vigneswaran, S. Adsorptive Removal of Five Heavy Metals from Water Using Blast Furnace Slag and Fly Ash. Environ. Sci. Pollut. Res. Int. 2018, 25, 20430–20438. DOI: 10.1007/s11356-017-9610-4.
  • Mohan, D.; Kumar, H.; Sarswat, A.; Alexandre-Franco, M.; Pittman, C. U. Jr. Cadmium and Lead Remediation Using Magnetic Oak Wood and Oak Bark Fast Pyrolysis Bio-Chars. Chem. Eng. J. 2014, 236, 513–528. DOI: 10.1016/j.cej.2013.09.057.
  • Ahmad, S. Z. N.; Salleh, W. N. W.; Ismail, A. F.; Yusof, N.; Yusop, M. Z. M.; Aziz, F. Adsorptive Removal of Heavy Metal Ions Using Graphene-Based Nanomaterials: Toxicity, Roles of Functional Groups and Mechanisms. Chemosphere 2020, 248, 126008. DOI: 10.1016/j.chemosphere.2020.126008.
  • Kumar, M.; Chung, J. S.; Hur, S. H. Graphene Composites for Lead Ions Removal from Aqueous Solutions. Appl. Sci. 2019, 9, 2925. DOI: 10.3390/app9142925.
  • Asghar, F.; Shakoor, B.; Fatima, S.; Munir, S.; Razzaq, H.; Naheed, S.; Butler, I. S. Fabrication and Prospective Applications of Graphene Oxide-Modified Nanocomposites for Wastewater Remediation. RSC Adv. 2022, 12, 11750–11768. DOI: 10.1039/D2RA00271J.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.