306
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Use of cationic p[2-(acryloyloxy)ethyl] trimethylammonium chloride in hydrogel synthesis and adsorption of methyl orange with jeffamine based crosslinker

&
Pages 91-106 | Received 29 Apr 2022, Accepted 22 Sep 2022, Published online: 11 Oct 2022

References

  • Singh, R.; Munya, V.; Are, V. N.; Nayak, D.; Chattopadhyay, S. A Biocompatible, Ph-Sensitive, and Magnetically Separable Superparamagnetic Hydrogel Nanocomposite as an Efficient Platform for the Removal of Cationic Dyes in Wastewater Treatment. ACS Omega. 2021, 6, 23139–23154. DOI: 10.1021/acsomega.1c02720.
  • Sarmah, D.; Karak, N. Double Network Hydrophobic Starch Based Amphoteric Hydrogel as an Effective Adsorbent for Both Cationic and Anionic Dyes. Carbohydr Polym. 2020, 242, 116320. DOI: 10.1016/j.carbpol.2020.116320.
  • Pereira, A. G.; Rodrigues, F. H.; Paulino, A. T.; Martins, A. F.; Fajardo, A. R. Recent Advances on Composite Hydrogels Designed for The Remediation of Dye-Contaminated Water and Wastewater: A Review. J. Clean. Prod. 2021, 284, 124703. DOI: 10.1016/j.jclepro.2020.124703.
  • Amuda, O. S.; Olayiwola, A. O.; Alade, A. O.; Farombi, A. G.; Adebisi, S. A. Adsorption of Methylene Blue from Aqueous Solution Using Steam-Activated Carbon Produced from Lantana Camara Stem. JEP. 2014, 05, 1352–1363. DOI: 10.4236/jep.2014.513129.
  • Muslim, M.; Ali, A.; Neogi, I.; Dege, N.; Shahid, M.; Ahmad, M. Facile Synthesis, Topological Study, and Adsorption Properties of a Novel Co (II)-Based Coordination Polymer for Adsorptive Removal of Methylene Blue and Methyl Orange Dyes. Polyhedron. 2021, 210, 115519. DOI: 10.1016/j.poly.2021.115519.
  • Yagub, M. T.; Sen, T. K.; Afroze, S.; Ang, H. M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv Colloid Interface Sci. 2014, 209, 172–184. DOI: 10.1016/j.cis.2014.04.002.
  • Lai, K. C.; Lee, L. Y.; Hiew, B. Y. Z.; Thangalazhy-Gopakumar, S.; Gan, S. Environmental Application of Three-Dimensional Graphene Materials as Adsorbents for Dyes and Heavy Metals: Review on Ice-Templating Method and Adsorption Mechanisms. J Environ Sci (China). 2019, 79, 174–199. DOI: 10.1016/j.jes.2018.11.023.
  • Natarajan, S.; Bajaj, H. C.; Tayade, R. J. Recent Advances Based on the Synergetic Effect of Adsorption for Removal of Dyes from Waste Water Using Photocatalytic Process. J Environ Sci (China). 2018, 65, 201–222. DOI: 10.1016/j.jes.2017.03.011.
  • Sirajudheen, P.; Poovathumkuzhi, N. C.; Vigneshwaran, S.; Chelaveettil, B. M.; Meenakshi, S. Applications of Chitin and Chitosan Based Biomaterials for the Adsorptive Removal of Textile Dyes from Water—A Comprehensive Review. Carbohydr Polym. 2021, 273, 118604. DOI: 10.1016/j.carbpol.2021.118604.
  • Osagie, C.; Othmani, A.; Ghosh, S.; Malloum, A.; Esfahani, Z. K.; Ahmadi, S. Dyes Adsorption from Aqueous Media Through the Nanotechnology: A Review. J. Mater. Res. Technol. 2021, 14, 2195–2218. DOI: 10.1016/j.jmrt.2021.07.085.
  • Singh, T.; Singhal, R. Kinetics and Thermodynamics of Cationic Dye Adsorption onto Dry and Swollen Hydrogels Poly(Acrylic Acid-Sodium Acrylate-Acrylamide) Sodium Humate. Desalination Water Treat. 2015, 53, 3668–3680. DOI: 10.1080/19443994.2013.871342.
  • Lee, J. W.; Choi, S. P.; Thiruvenkatachari, R.; Shim, W. G.; Moon, H. Submerged Microfiltration Membrane Coupled with Alum Coagulation/Powdered Activated Carbon Adsorption for Complete Decolorization of Reactive Dyes. Water Res. 2006, 40, 435–444. DOI: 10.1016/j.watres.2005.11.034.
  • Kim, D. H.; Shin, M. C.; Choi, H. D.; Seo, C. I.; Baek, K. Removal Mechanisms of Copper Using Steel-Making Slag: Adsorption and Precipitation. Desalination. 2008, 223, 283–289. DOI: 10.1016/j.desal.2007.01.226.
  • Zhu, M. X.; Lee, L.; Wang, H. H.; Wang, Z. Removal of an Anionic Dye by Adsorption/Precipitation Processes Using Alkaline White Mud. J Hazard Mater. 2007, 149, 735–741. DOI: 10.1016/j.jhazmat.2007.04.037.
  • Hodi, M.; Polyak, K.; Hlavay, J. Removal of Pollutants from Drinking Water by Combined Ion Exchange and Adsorption Methods. Environ. Int. 1995, 21, 325–331. DOI: 10.1016/0160-4120(95)00019-H.
  • Bello, M. M.; Raman, A. A. A. Synergy of Adsorption and Advanced Oxidation Processes in Recalcitrant Wastewater Treatment. Environ Chem Lett. 2019, 17, 1125–1142. DOI: 10.1007/s10311-018-00842-0.
  • Gur-Reznik, S.; Katz, I.; Dosoretz, C. G. Removal of Dissolved Organic Matter by Granular-Activated Carbon Adsorption as a Pretreatment to Reverse Osmosis of Membrane Bioreactor Effluents. Water Res. 2008, 42, 1595–1605. DOI: 10.1016/j.watres.2007.10.004.
  • Katheresan, V.; Kansedo, J.; Lau, S. Y. Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. DOI: 10.1016/j.jece.2018.06.060.
  • Davarnejad, R.; Afshar, S.; Etehadfar, P. Activated Carbon Blended with Grape Stalks Powder: Properties Modification and Its Application in a Dye Adsorption. Arab. J. Chem. 2020, 13, 5463–5473. DOI: 10.1016/j.arabjc.2020.03.025.
  • Krysztafkiewicz, A.; Binkowski, S.; Jesionowski, T. Adsorption of Dyes on a Silica Surface. Appl. Surf. Sci. 2002, 199, 31–39. DOI: 10.1016/S0169-4332(02)00248-9.
  • Paton-Carrero, A.; Sanchez, P.; Sánchez-Silva, L.; Romero, A. Graphene-Based Materials Behaviour for Dyes Adsorption. Mater. Today Commun. 2022, 30, 103033. DOI: 10.1016/j.mtcomm.2021.103033.
  • Wang, S.; Chen, W.; Zhang, C.; Pan, H. Efficient and Selective Adsorption of Cationic Dyes with Regenerated Cellulose. Chem. Phys. Lett. 2021, 784, 139104. DOI: 10.1016/j.cplett.2021.139104.
  • Khajavian, M.; Salehi, E.; Vatanpour, V. Chitosan/Polyvinyl Alcohol Thin Membrane Adsorbents Modified with Zeolitic Imidazolate Framework (ZIF-8) Nanostructures: Batch Adsorption and Optimization. Sep. Purif. Technol. 2020, 241, 116759. DOI: 10.1016/j.seppur.2020.116759.
  • González, J. A.; Villanueva, M. E.; Piehl, L. L.; Copello, G. J. Development of a Chitin/Graphene Oxide Hybrid Composite for the Removal of Pollutant Dyes: Adsorption and Desorption Study. Chem. Eng. J. 2015, 280, 41–48. DOI: 10.1016/j.cej.2015.05.112.
  • Bukhari, A.; Javed, T.; Haider, M. N. Adsorptive Exclusion of Crystal Violet Dye from Wastewater by Using Fish Scales as an Adsorbent. J. Dispers. Sci. Technol. [Online early access]. DOI: 10.1080/01932691.2022.2059506. Published online: Apr 19,2022.
  • Ahmaruzzaman, M. A Review on the Utilization of Fly Ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. DOI: 10.1016/j.pecs.2009.11.003.
  • Gao, B.; Yu, H.; Wen, J.; Zeng, H.; Liang, T.; Zuo, F.; Cheng, C. Super-Adsorbent Poly (Acrylic Acid)/Laponite Hydrogel with Ultrahigh Mechanical Property for Adsorption of Methylene Blue. J. Environ. Chem. Eng. 2021, 9, 106346. DOI: 10.1016/j.jece.2021.106346.
  • Tang, Z.; Hu, X.; Ding, H.; Li, Z.; Liang, R.; Sun, G. Villi-Like Poly (Acrylic Acid) Based Hydrogel Adsorbent with Fast and Highly Efficient Methylene Blue Removing Ability. J Colloid Interface Sci. 2021, 594, 54–63. DOI: 10.1016/j.jcis.2021.02.124.
  • Sinha, V.; Chakma, S. Advances in the Preparation of Hydrogel for Wastewater Treatment: A Concise Review. J. Environ. Chem. Eng. 2019, 7, 103295. DOI: 10.1016/j.jece.2019.103295.
  • Khan, M.; Lo, I. M. A. Holistic Review of Hydrogel Applications in the Adsorptive Removal of Aqueous Pollutants: Recent Progress, Challenges, and Perspectives. Water Res. 2016, 106, 259–271. DOI: 10.1016/j.watres.2016.10.008.
  • Benjelloun, M.; Miyah, Y.; Evrendilek, G. A.; Zerrouq, F.; Lairini, S. Recent Advances in Adsorption Kinetic Models: Their Application to Dye Types. Arab. J. Chem. 2021, 14, 103031. DOI: 10.1016/j.arabjc.2021.103031.
  • Darwish, A. A. A.; Rashad, M.; AL-Aoh, H. A. Methyl Orange Adsorption Comparison on Nanoparticles: Isotherm, Kinetics, and Thermodynamic Studies. Dyes Pigm. 2019, 160, 563–571. DOI: 10.1016/j.dyepig.2018.08.045.
  • Safavi-Mirmahalleh, S. A.; Salami-Kalajahi, M.; Roghani-Mamaqani, H. Adsorption Kinetics of Methyl Orange from Water by Ph-Sensitive Poly (2-(Dimethylamino) Ethyl Methacrylate)/Nanocrystalline Cellulose Hydrogels. Environ Sci Pollut Res Int. 2020, 27, 28091–28103. DOI: 10.1007/s11356-020-09127-y.
  • Iwuozor, K. O.; Ighalo, J. O.; Emenike, E. C.; Ogunfowora, L. A.; Igwegbe, C. A. Adsorption of Methyl Orange: A Review on Adsorbent Performance. Curr. Opin. Green Sustain. Chem. 2021, 4,100179. DOI: 10.1016/j.crgsc.2021.100179.
  • Cañamero, P. F.; de la Fuente, J. L.; Fernández-García, M. Curing Kinetic Study Using a Well-Controlled Multifunctional Copolymer Based on Glycidyl Methacrylate. Eur. Polym. J. 2009, 45, 2665–2673. DOI: 10.1016/j.eurpolymj.2009.05.030.
  • García-Astrain, C.; Algar, I.; Gandini, A.; Eceiza, A.; Corcuera, M. Á.; Gabilondo, N. Hydrogel Synthesis by Aqueous Diels-Alder Reaction Between Furan Modified Methacrylate and Polyetheramine-Based Bismaleimides. J. Polym. Sci. Part A: Polym. Chem. 2015, 53, 699–708. DOI: 10.1002/pola.27495.
  • Mocanu, G.; Mihaï, D.; Dulong, V.; Picton, L.; Le Cerf, D. New Anionic Crosslinked Multi-Responsive Pullulan Hydrogels. Carbohydr. Polym. 2012, 87, 1440–1446. DOI: 10.1016/j.carbpol.2011.09.037.
  • Li, Y.; Luo, D.; Yang, M. Novel Nanocomposite of Poly(Acrylonitrile-Co-Glycidyl Methacrylate) Crosslinked with Jeffamine-Functionalized Multiwalled Carbon Nanotubes as Gel Polymer Electrolytes. J. Appl. Polym. Sci. 2013, 127, 2243–2250. DOI: 10.1002/app.37936.
  • Cruise, G. M.; Hincapie, G.; Harris, C. Polymer Particles. Patent Code US 10,144,793 B2, Dec 4, 2018.
  • Ilić-Stojanović, S.; Nikolić, L.; Nikolić, V.; Petrović, S.; Oro, V.; Mitić, Ž.; Najman, S. Semi-Crystalline Copolymer Hydrogels as Smart Drug Carriers: In Vitro Thermo-Responsive Naproxen Release Study. Pharmaceutics. 2021, 13, 158. DOI: 10.3390/pharmaceutics13020158.
  • Kim, B.; La Flamme, K.; Peppas, N. A. Dynamic Swelling Behavior of Ph‐Sensitive Anionic Hydrogels Used for Protein Delivery. J. Appl. Polym. Sci. 2003, 89, 1606–1613. DOI: 10.1002/app.12337.
  • Ozay, O.; Ilgin, P.; Ozay, H.; Gungor, Z.; Yilmaz, B.; Kıvanc, M. R. The Preparation of Various Shapes and Porosities of Hydroxyethyl Starch/P (HEMA-Co-NVP) IPN Hydrogels as Programmable Carrier for Drug Delivery. J. Macromol. Sci. A. 2020, 57, 379–387. DOI: 10.1080/10601325.2019.1700803.
  • Ilgın, P. High Removal of Methylene Blue Dye from Aqueous Solution by Using A Novel Pectin-Based Hydrogel. Int. J. Environ. Anal. Chem. [Online early access]. DOI: 10.1080/03067319.2020.1796995. Published online: Jul 27, 2020.
  • Zheng, Y.; Wang, A. Superadsorbent with Three-Dimensional Networks: From Bulk Hydrogel to Granular Hydrogel. Eur. Polym. J. 2015, 72, 661–686. DOI: 10.1016/j.eurpolymj.2015.02.031.
  • Chavda, H. V.; Patel, C. N. Effect of Crosslinker Concentration on Characteristics of Superporous Hydrogel. Int J Pharm Investig. 2011, 1, 17–21. DOI: 10.4103/2230-973X.76724.[PMC].[23071915].
  • Barati, A.; Norouzi, H. R.; Sharafoddinzadeh, S.; Davarnejad, R. Swelling Kinetics Modeling of Cationic Methacrylamide-Based Hydrogels. World Appl. Sci. J. 2010, 11, 1336–1341.
  • Xie, W. J.; Gao, Y. Q. A Simple Theory for the Hofmeister Series. J Phys Chem Lett. 2013, 4, 4247–4252. DOI: 10.1021/jz402072g.
  • Žuržul, N.; Ilseng, A.; Prot, V. E.; Sveinsson, H. M.; Skallerud, B. H.; Stokke, B. T. Donnan Contribution and Specific Ion Effects in Swelling of Cationic Hydrogels Are Additive: Combined High-Resolution Experiments and Finite Element Modeling. Gels. 2020, 6, 31. DOI: 10.3390/gels6030031.
  • Kıvanc, M. R.; Ozay, O.; Ozay, H.; Ilgin, P. Removal of Anionic Dyes from Aqueous Media by Using a Novel High Positively Charged Hydrogel with High Capacity. J. Dispers. Sci. Technol. 2022, 43, 1000–1015. 43 DOI: 10.1080/01932691.2020.1847658.
  • Podual, K.; Doyle lii, F. J.; Peppas, N. A. Preparation and Dynamic Response of Cationic Copolymer Hydrogels Containing Glucose Oxidase. Polymer. 2000, 41, 3975–3983. DOI: 10.1016/S0032-3861(99)00620-5.
  • Rehman, T. U.; Bibi, S.; Khan, M.; Ali, I.; Shah, L. A.; Khan, A.; Ateeq, M. Fabrication of Stable Superabsorbent Hydrogels for Successful Removal of Crystal Violet from Waste Water. RSC Adv. 2019, 9, 40051–40061. DOI: 10.1039/C9RA08079A.
  • Haitham, K.; Razak, S.; Nawi, M. A. Kinetics and Isotherm Studies of Methyl Orange Adsorption by a Highly Recyclable Immobilized Polyaniline on a Glass Plate. Arab. J. Chem. 2019, 12, 1595–1606. DOI: 10.1016/j.arabjc.2014.10.010.
  • Onder, A.; Ozay, H. Highly Efficient Removal of Methyl Orange from Aqueous Media by Amine Functional Cyclotriphosphazene Submicrospheres as Reusable Column Packing Material. Chem. Eng. Process. 2021, 165, 108427. DOI: 10.1016/j.cep.2021.108427.
  • Onder, A.; Ilgin, P.; Ozay, H.; Ozay, O. Removal of Dye from Aqueous Medium with Ph-Sensitive Poly [(2-(Acryloyloxy) Ethyl Trimethylammonium Chloride-co-1-Vinyl-2-Pyrrolidone] Cationic Hydrogel. J. Environ. Chem. Eng. 2020, 8, 104436. DOI: 10.1016/j.jece.2020.104436.
  • Banerjee, S.; Chattopadhyaya, M. C. Adsorption Characteristics for the Removal of A Toxic Dye, Tartrazine from Aqueous Solutions by A Low Cost Agricultural By-Product. Arab. J. Chem. 2017, 10, S1629–S1638. DOI: 10.1016/j.arabjc.2013.06.005.
  • Wong, S.; Ghafar, N. A.; Ngadi, N.; Razmi, F. A.; Inuwa, I. M.; Mat, R.; Amin, N. A. S. Effective Removal of Anionic Textile Dyes Using Adsorbent Synthesized from Coffee Waste. Sci. Rep. 2020, 10, 1–13. DOI: 10.1038/s41598-020-60021-6.
  • Rápó, E.; Tonk, S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules. 2021, 26, 5419. DOI: 10.3390/molecules26175419.
  • Holkar, C. R.; Jadhav, A. J.; Pinjari, D. V.; Mahamuni, M.; Pandit, A. B. A Critical Review on Textile Wastewater Treatments: Possible Approaches. J Environ Manage. 2016, 182, 351–366. DOI: 10.1016/j.jenvman.2016.07.090.
  • He, S.; Sun, X.; Zhang, H. Influence of the Protonation State on the Binding Mode of Methyl Orange with Cucurbiturils. J. Mol. Struct. 2016, 1107, 182–188. DOI: 10.1016/j.molstruc.2015.11.039.
  • Wawrzkiewicz, M.; Hubicki, Z. Kinetics of Adsorption of Sulphonated Azo Dyes on Strong Basic Anion Exchangers. Environ Technol. 2009, 30, 1059–1071. DOI: 10.1080/09593330903055650.
  • Nasrollahzadeh, M. S.; Hadavifar, M.; Ghasemi, S. S.; Arab Chamjangali, M. Synthesis of ZnO Nanostructure Using Activated Carbon for Photocatalytic Degradation of Methyl Orange from Aqueous Solutions. Appl. Water Sci. 2018, 8, 1–12. DOI: 10.1007/s13201-018-0750-6.
  • Hussain, S.; Kamran, M.; Khan, S. A.; Shaheen, K.; Shah, Z.; Suo, H.; Khan, Q.; Shah, A. B.; Rehman, W. U.; Al-Ghamdi, Y. O.; Ghani, U. Adsorption, Kinetics and Thermodynamics Studies of Methyl Orange Dye Sequestration Through Chitosan Composites Films. Int J Biol Macromol. 2021, 168, 383–394. DOI: 10.1016/j.ijbiomac.2020.12.054.
  • Zen, S.; El Berrichi, F.; Abidi, N.; Duplay, J.; Jada, A.; Gasmi, B. Activated Kaolin’s Potential Adsorbents for the Removal of Derma Blue R67 Acid Dye: Kinetic And Thermodynamic Studies. DWT. 2018, 112, 196–206. DOI: 10.5004/dwt.2018.21996.
  • Osmari, T. A.; Gallon, R.; Schwaab, M.; Barbosa-Coutinho, E.; Severo, J. B.; Jr.; Pinto, J. C. Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters. Adsorpt. Sci. Technol. 2013, 31, 433–458. DOI: 10.1260/0263-6174.31.5.433.
  • Czinkota, I.; Filep, T.; Rétháti, G.; Tolner, L.; Gulyás, M.; Sebők, A.; Dálnoki, B. Derivation and Application of a Generalised Exchange-Adsorption Isotherm for the Adsorption of Hydrophobic Compounds on Soils. Soil Water Res. 2021, 16, 67–73. DOI: 10.17221/69/2020-SWR.
  • Hammud, H. H.; Shmait, A.; Hourani, N. Removal of Malachite Green from Water Using Hydrothermally Carbonized Pine Needles. RSC Adv. 2015, 5, 7909–7920. DOI: 10.1039/C4RA15505J.
  • Rushton, G. T.; Karns, C. L.; Shimizu, K. D. A Critical Examination of the Use of the Freundlich Isotherm in Characterizing Molecularly Imprinted Polymers (MIPs). Anal. Chim. Acta. 2005, 528, 107–113. DOI: 10.1016/j.aca.2004.07.048.
  • Elsherbiny, A. S.; El-Hefnawy, M. E.; Gemeay, A. H. Adsorption Efficiency of Polyaspartate-Montmorillonite Composite towards the Removal of Pb (II) and Cd (II) from Aqueous Solution. J Polym Environ. 2018, 26, 411–422. DOI: 10.1007/s10924-017-0958-9.
  • Onder, A.; Ilgin, P.; Ozay, H.; Ozay, O. Preparation of Composite Hydrogels Containing Fly Ash as Low-Cost Adsorbent Material and İts Use in Dye Adsorption. Int. J. Environ. Sci. Technol. 2022, 19, 7031–7048. DOI: 10.1007/s13762-021-03622-6.
  • Ho, Y. S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. DOI: https://doi.org/10.1016/S0032-9592(98)00112-5.
  • Ilgin, P.; Ozay, H.; Ozay, O. The Efficient Removal of Anionic and Cationic Dyes from Aqueous Media Using Hydroxyethyl Starch-Based Hydrogels. Cellulose. 2020, 27, 4787–4802. DOI: 10.1007/s10570-020-03074-0.
  • Cheung, W. H.; Szeto, Y. S.; McKay, G. Intraparticle Diffusion Processes During Acid Dye Adsorption onto Chitosan. Bioresour Technol. 2007, 98, 2897–2904. DOI: 10.1016/j.biortech.2006.09.045.
  • Murugesan, A.; Ravikumar, L.; SathyaSelvaBala, V.; SenthilKumar, P.; Vidhyadevi, T.; Kirupha, S. D.; Kalaivani, S. S.; Krithiga, S.; Sivanesan, S. Removal of Pb (II), Cu (II) And Cd (II) Ions from Aqueous Solution Using Polyazomethineamides: Equilibrium and Kinetic Approach. Desalination. 2011, 271, 199–208. DOI: 10.1016/j.desal.2010.12.029.
  • Agboola, O. D.; Benson, N. U. Physisorption and Chemisorption Mechanisms Influencing Micro (Nano) Plastic-Organic Chemical Contaminants Interactions: A. Front. Environ. Sci. 2021, 9, 678574. DOI: 10.3389/fenvs.2021.678574.
  • Toleutay, G.; Dauletbekova, M.; Shakhvorostov, A.; Kudaibergenov, S. Quenched Polyampholyte Hydrogels Based on (3‐Acrylamidopropyl) Trimethyl Ammonium Chloride and Sodium Salt of 2‐Acrylamido‐2‐Methyl‐1‐Propanesulfonic Acid. Macromol. Symp. 2019, 385, 1800160. DOI: 10.1002/masy.201800160.
  • Roa, K.; Tapiero, Y.; Thotiyl, M. O.; Sánchez, J. Hydrogels Based on Poly ([2-(Acryloxy) Ethyl] Trimethylammonium Chloride) and Nanocellulose Applied to Remove Methyl Orange Dye from Water. Polymers. 2021, 13, 2265. DOI: 10.3390/polym13142265.
  • Suresh Kumar, P.; Ejerssa, W. W.; Wegener, C. C.; Korving, L.; Dugulan, A. I.; Temmink, H.; van Loosdrecht, M. C. M.; Witkamp, G.-J. Understanding and Improving the Reusability of Phosphate Adsorbents for Wastewater Effluent Polishing. Water Res. 2018, 145, 365–374. DOI: 10.1016/j.watres.2018.08.040.
  • Nolasco, J. E. T.; Cañeba, E. N. O.; Edquila, K. M. V.; Espita, J. I. C.; Perez, J. V. D. Kinetics and Isotherm Studies of Methyl Orange Adsorption Using Polyethyleneimine-Graphene Oxide Polymer Nanocomposite Beads. KEM. 2019, 801, 304–310. DOI: 10.4028/www.scientific.net/KEM.801.304.
  • Yaseen, D. A.; Scholz, M. Textile Dye Wastewater Characteristics and Constituents of Synthetic Effluents: A Critical Review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. DOI: 10.1007/s13762-018-2130-z.
  • Ihlenburg, R. B.; Lehnen, A. C.; Koetz, J.; Taubert, A. Sulfobetaine Cryogels for Preferential Adsorption of Methyl Orange from Mixed Dye Solutions. Polymers. 2021, 13, 208. DOI: 10.3390/polym13020208.
  • Gan, L.; Shang, S.; Hu, E.; Yuen, C. W. M.; Jiang, S. X. Konjac Glucomannan/Graphene Oxide Hydrogel with Enhanced Dyes Adsorption Capability for Methyl Blue and Methyl Orange. Appl. Surf. Sci. 2015, 357, 866–872. DOI: 10.1016/j.apsusc.2015.09.106.
  • Habiba, U.; Siddique, T. A.; Lee, J. J. L.; Joo, T. C.; Ang, B. C.; Afifi, A. M. Adsorption Study of Methyl Orange by Chitosan/Polyvinyl Alcohol/Zeolite Electrospun Composite Nanofibrous Membrane. Carbohydr Polym. 2018, 191, 79–85. DOI: 10.1016/j.carbpol.2018.02.081.
  • Lian, F.; Zheng, M.; Chen, M.; Zhu, Y.; Zhang, L.; Zheng, B. Modified Xanthan Gum for Methyl Orange Uptake: Kinetic, Isotherm, and Thermodynamic Behaviors. Int J Biol Macromol. 2020, 165, 2442–2450. DOI: 10.1016/j.ijbiomac.2020.10.147.
  • Uddin, M. K.; Baig, U. Synthesis of Co3O4 Nanoparticles and Their Performance Towards Methyl Orange Dye Removal: Characterisation, Adsorption and Response Surface Methodology. J. Clean. Prod. 2019, 211, 1141–1153. DOI: 10.1016/j.jclepro.2018.11.232.
  • Wang, Z.; Li, Y.; Xie, X.; Wang, Z. Bifunctional MnFe2O4/Chitosan Modified Biochar Composite for Enhanced Methyl Orange Removal Based on Adsorption and Photo-Fenton Process. Colloids Surf. A Physicochem. Eng. Asp. 2021, 613, 126104. DOI: 10.1016/j.colsurfa.2020.126104.
  • Zhao, B.; Sun, X.; Wang, L.; Zhao, L.; Zhang, Z.; Li, J. Adsorption of Methyl Orange From Aqueous Solution by Composite Magnetic Microspheres of Chitosan and Quaternary Ammonium Chitosan Derivative. Chin. J. Chem. Eng. 2019, 27, 1973–1980. DOI: 10.1016/j.cjche.2018.12.014.
  • Zhang, Z.; Zhu, L.; Lu, W.; Li, X.; Sun, X.; Lü, R.; Ding, H. Evaluation of Functional Group Content of N-Methylimidazolium Anion Exchange Resin on the Adsorption of Methyl Orange and Alizarin Red. Chem. Eng. Res. Des. 2016, 111, 161–168. DOI: 10.1016/j.cherd.2016.05.008.
  • Goscianska, J.; Marciniak, M.; Pietrzak, R. Mesoporous Carbons Modified with Lanthanum (III) Chloride for Methyl Orange Adsorption. Chem. Eng. J. 2014, 247, 258–264. DOI: 10.1016/j.cej.2014.03.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.