146
Views
0
CrossRef citations to date
0
Altmetric
Articles

Preparation and evaluation of a nanoemulsion containing cordycepin and its protective effect on skin

, , , , , , , , & show all
Pages 1094-1102 | Received 01 Jul 2022, Accepted 01 Dec 2022, Published online: 17 Dec 2022

References

  • Ng, T. B.; Wang, H. X. Pharmacological Actions of Cordyceps, a Prized Folk Medicine. J. Pharm. Pharmacol. 2005, 57, 1509–1519. DOI: 10.1211/jpp.57.12.0001.
  • Jeong, J. W.; Jin, C. Y.; Park, C.; Hong, S. H.; Kim, G. Y.; Jeong, Y. K.; Lee, J. D.; Yoo, Y. H.; Choi,.; Y.; H. Induction of Apoptosis by Cordycepin via Reactive Oxygen Species Generation in Human Leukemia Cells. Toxicol. in Vitro 2011, 25, 817–824. DOI: 10.1016/j.tiv.2011.02.001.
  • Chiriví, J.; Danies, G.; Sierra, R.; Schauer, N.; Trenkamp, S.; Restrepo, S.; Sanjuan, T. Metabolomic Profile and Nucleoside Composition of Cordyceps Nidus sp. nov. (Cordycipitaceae): a New Source of Active Compounds. PLoS One 2017, 12, e0179428. DOI DOI: 10.1371/journal.pone.0179428.
  • Sharma, S. K.; Gautam, N. Chemical Composition and Antioxidant and Antibacterial Activities of Cultured Mycelia of Four Clavicipitaceous Mushrooms (Ascomycetes) from the Indian Himalayas. Int. J. Med. Mushrooms 2017, 19, 45–54. DOI: 10.1615/IntJMedMushrooms.v19.i1.50.
  • Zhang, H. C.; Fan, H. T.; Wang, X. J.; Zhang, Z. T.; Yang, J.; Yang, G. W.; Wang, W. B.; Li, J.; Ding, Q. Purification of Cordycepin from Fermentation Broth of Cordyceps militaris by Use of Macroporous Resin AB-8 and Octadecyl Bonded Silica Chromatography. Mycosystema 2015, 34, 490–498. in Chinese)
  • Zhang, H. C.; Deng, L. N.; Zhang, Z. T.; Guan, Y. S.; Li, B.; Yang, J.; Fan, H. T.; ’Yang, G. W.; Chen, X. F.; Zhang, J. J.; et al. Enhanced Cordycepin Production in Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes), Mutated by a Multifunctional Plasma Mutagenesis System. Int. J. Med. Mushrooms 2020, 22, 1147–1159. DOI: 10.1615/IntJMedMushrooms.2020037153.
  • Cunningham, K. G.; Hutchinson, S. A.; Manson, W.; Spring, F. S. Cordycepin, a Metabolic Product from Cultures of Cordyceps militaris (Linn.) Link. Part I. Isolation and Characterization. J. Chem. Soc. 1951, 2, 2299–2300. DOI: 10.1039/jr9510002299.
  • Cho, S. H.; Kang, I. C. The Inhibitory Effect of Cordycepin on the Proliferation of Cisplatin-Resistant A549 Lung Cancer Cells. Biochem. Biophys. Res. Commun. 2018, 498, 431–436. DOI: 10.1016/j.bbrc.2018.02.188.
  • Olatunji, O. J.; Feng, Y.; Olatunji, O. O.; Tang, J.; Ouyang, Z.; Su, Z. Cordycepin Protects PC12 Cells against 6-Hydroxydopamine Induced Neurotoxicity via Its Antioxidant Properties. Biomed. Pharmacother. 2016, 81, 7–14. DOI: 10.1016/j.biopha.2016.03.009.
  • Ryu, E.; Son, M.; Lee, M.; Lee, K.; Cho, J. Y.; Cho, S.; Lee, S. K.; Lee, Y. M.; Cho, H.; Sung, G. H.; et al. Cordycepin is a Novel Chemical Suppressor of Epstein-Barr Virus Replication. Oncoscience 2014, 1, 866–881. DOI: 10.18632/oncoscience.110.
  • Yong, T. Q.; Chen, S. D.; Xie, Y. Z.; Chen, D. L.; Su, J.; Shuai, O.; Jiao, C.; Zuo, D. Cordycepin, a Characteristic Bioactive Constituent in Cordyceps militaris, Ameliorates Hyperuricemia through URAT1 in Hyperuricemic Mice. Front. Microbiol. 2018, 9, 58. DOI: 10.3389/fmicb.2018.00058.
  • De Clercq, E. Curious (Old and New) Antiviral Nucleoside Analogues with Intriguing Therapeutic Potential. Curr. Med. Chem. 2015, 22, 3866–3880. DOI: 10.2174/0929867322666150625094705.
  • Kondrashov, A.; Meijer, H. A.; Barthet-Barateig, A.; Parker, H. N.; Khurshid, A.; Tessier, S.; Sicard, M.; Knox, A. J.; Pang, L.; De Moor, C. H. Inhibition of Polyadenylation Reduces Inflammatory Gene Induction. RNA 2012, 18, 2236–2250. DOI: 10.1261/rna.032391.112.
  • Kan, H.; Wang, Y.; Wang, D.; Sun, H.; Zhou, S.; Wang, H.; Guan, J.; Li, M. Cordycepin Rescues Lidocaine-Induced Neurotoxicity in Dorsal Root Ganglion by Interacting with Inflammatory Signaling Pathway MMP3. Eur. J. Pharmacol. 2018, 827, 88–93. DOI: 10.1016/j.ejphar.2018.01.049.
  • Park, E. S.; Kang, D. H.; Yang, M. K.; Kang, J. C.; Jang, Y. C.; Park, J. S.; Kim, S. K.; Shin,.; H.; S. Cordycepin, 3'-Deoxyadenosine, Prevents Rat Hearts from Ischemia/Reperfusion Injury via Activation of Akt/GSK-3β/p70S6K Signaling Pathway and HO-1 Expression. Cardiovasc. Toxicol. 2014, 14, 1–9. DOI: 10.1007/s12012-013-9232-0.
  • Yoou, M. S.; Jin, M. H.; Lee, S. Y.; Lee, S. H.; Kim, B.; Roh, S. S.; Choi, I. H.; Lee, M. S.; Kim, H. M.; Jeong, H. J. Cordycepin Suppresses Thymic Stromal Lymphopoietin Expression via Blocking Caspase-1 and Receptor-Interacting Protein 2 Signaling Pathways in Mast Cells. Biol. Pharm. Bull. 2016, 39, 90–96. DOI: 10.1248/bpb.b15-00631.
  • Yoou, M. S.; Yoon, K. W.; Choi, Y.; Kim, H. M.; Jeong, H. J. Cordycepin Diminishes Thymic Stromal Lymphopoietin-Induced Interleukin-13 Production. Eur. J. Pharmacol. 2017, 802, 1–6. DOI: 10.1016/j.ejphar.2017.02.033.
  • Wang, X. L.; Xi, D. S.; Mo, J.; Wang, K.; Luo, Y.; Xia, E. B.; Huang, R.; Luo, S. R.; Wei, J.; Ren, Z. H.; et al. Cordycepin Exhibits a Suppressive Effect on T Cells through Inhibiting TCR Signaling Cascade in CFA-Induced Inflammation Mice Model. Immunopharmacol. Immunotoxicol. 2020, 42, 119–127. DOI: 10.1080/08923973.2020.1728310.
  • Liu, W.; Zhang, L.; Sun, S.; Tang, L. S.; He, S. M.; Chen, A. Q.; Yao, L. N.; Ren, D. L. Cordycepin Inhibits Inflammatory Responses through Suppression of ERK Activation in Zebrafish. Dev. Comp. Immunol. 2021, 124, 104178. DOI: 10.1016/j.dci.2021.104178.
  • Han, N. R.; Moon, P. D.; Kim, H. M.; Jeong, H. J. Cordycepin Ameliorates Skin Inflammation in a DNFB-Challenged Murine Model of Atopic Dermatitis. Immunopharmacol. Immunotoxicol. 2018, 40, 401–407. DOI: 10.1080/08923973.2018.1510964.
  • Jia, Y.; Li, H.; Bao, H.; Zhang, D.; Feng, L.; Xiao, Y.; Zhu, K.; Hou, Y.; Luo, S.; Zhang, Y.; et al. Cordycepin (3'-Deoxyadenosine) Promotes Remyelination via Suppression of Neuroinflammation in a Cuprizone-Induced Mouse Model of Demyelination. Int. Immunopharmacol. 2019, 75, 105777. DOI: 10.1016/j.intimp.2019.105777.
  • Song, Y. C.; Liu, C. T.; Lee, H. J.; Yen, H. R. Cordycepin Prevents and Ameliorates Experimental Autoimmune Encephalomyelitis by Inhibiting Leukocyte Infiltration and Reducing Neuroinflammation. Biochem. Pharmacol. 2022, 197, 114918. DOI: 10.1016/j.bcp.2022.114918.
  • Lee, Y. R.; Noh, E. M.; Jeong, E. Y.; Yun, S. K.; Jeong, Y. J.; Kim, J. H.; Kwon, K. B.; Kim, B. S.; Lee, S. H.; Park, C. S.; et al. Cordycepin Inhibits UVB-Induced Matrix Metalloproteinase Expression by Suppressing the Nf-Kappab Pathway in Human Dermal Fibroblasts. Exp. Mol. Med. 2009, 41, 548–554. DOI: 10.3858/emm.2009.41.8.060.
  • Ruela, A. L. M.; Perissinato, A. G.; de, S.; Lino, M. E.; Mudrik, P. S.; Perreira, G. R. Evaluation of Skin Absorption of Drugs from Topical and Transdermal Formulations. Braz. J. Pharm. Sci. 2016, 52, 527–544. DOI DOI: 10.1590/s1984-82502016000300018.
  • Haque, T.; Talukder, M. M. U. Chemical Enhancer: A Simplistic Way to Modulate Barrier Function of the Stratum Corneum. Adv. Pharm. Bull. 2018, 8, 169–179. DOI: 10.15171/apb.2018.021.
  • Verma, A.; Jain, A.; Hurkat, P.; Jain, S. K. Transfollicular Drug Delivery: current Perspectives. RRTD 2016, 5, 1–17. DOI: 10.2147/RRTD.S75809.
  • Yu, Y. Q.; Yang, X.; Wu, X. F.; Fan, Y. B. Enhancing Permeation of Drug Molecules across the Skin via Delivery in Nanocarriers: novel Strategies for Effective Transdermal Applications. Front. Bioeng. Biotechnol. 2021, 9, 646554. DOI: 10.3389/fbioe.2021.646554.
  • Santos, A. C.; Morais, F.; Simões, A.; Pereira, I.; Sequeira, J. A. D.; Pereira-Silva, M.; Veiga, F.; Ribeiro, A. Nanotechnology for the Development of New Cosmetic Formulations. Expert Opin. Drug Deliv. 2019, 16, 313–330. DOI: 10.1080/17425247.2019.1585426.
  • Ramadon, D.; Mccrudden, M. T. C.; Courtenay, A. J.; Donnelly, R. F. Enhancement Strategies for Transdermal Drug Delivery Systems: current Trends and Applications. Drug Deliv. Transl. Res. 2022, 12, 758–791. DOI: 10.1007/s13346-021-00909-6.
  • Ministry of Health, People’s Republic of China. Safety and Technical Standards for Cosmetics. Beijing: People’s Medical Publishing House. 2015, 302. (In Chinese).
  • Morgan, R. L.; Castles, T. R.; Zwicker, G. M.; Taylor, D. M. Skin Irritation Testing in Rabbits Complicated by Dermal Mucormycosis. Toxicol. Pathol. 1985, 13, 185–191. DOI: 10.1177/019262338501300304.
  • Suh, M.; Troese, M. J.; Hall, D. A.; Yasso, B.; Yzenas, J. J.; Proctor, D. M. Evaluation of Electric Arc Furnace-Processed Steel Slag for Dermal Corrosion, Irritation, and Sensitization from Dermal Contact. J. Appl. Toxicol. 2014, 34, 1418–1425. DOI: 10.1002/jat.2974.
  • Jimenez, W.; Gonzalez, E.; Murphy, V. A.; Bauta, W. Evaluation of Dermal Corrosion and Irritation by Cytoreg in Rabbits. Toxicol Rep 2021, 8, 1527–1529. DOI: 10.1016/j.toxrep.2021.07.021.
  • Das, S.; Nanda, S. K.; Rath, T.; Prakash, K.; Bhattacharyay, D. In Silico Analysis of Phytochemicals from Lemon Grass against Shikimate Dehydrogenase of Staphylococcus aureus Causing Skin Disease. Plant Cell Biotechnol. Mol. Biol. 2020, 21, 51–55.
  • Dávila-Rodríguez, M.; López-Malo, A.; Palou, E.; Ramírez-Corona, N.; JiménezMunguía, M. T. Essential Oils Microemulsions Prepared with High-Frequency Ultrasound: physical Properties and Antimicrobial Activity. J. Food Sci. Technol. 2020, 57, 4133–4142. DOI: 10.1007/s13197-020-04449-8.
  • Kaur, H.; Pancham, P.; Kaur, R.; Agarwal, S.; Singh, M. Synthesis and Characterization of Citrus Limonum Essential Oil Based Nanoemulsion and Its Enhanced Antioxidant Activity with Stability for Transdermal Application. JBNB 2020, 11, 215–236. 36. DOI: 10.4236/jbnb.2020.114014.
  • Semwal, U. P.; Sharma, P.; Sharma, A.; Singh, G. N. Evaluation of Preservative Effectiveness in Ophthalmic Drops by Microbial Challenge Test. World J. Pharm. Sci. 2014, 3, 31–36.
  • Li, C. T.; Zhao, H. Efficacy Evaluation of Cosmetics (IV): Scientific Support for Delaying Skin Aging Cosmetic Efficacy Claims. Chin. Surfactant Deterg. Cosmet. 2018, 48, 188–195. (in Chinese).
  • Sugiyama, M.; Akita, M.; Alépée, N.; Fujishiro, M.; Hagino, S.; Handa, Y.; Ikeda, H.; Imai, N.; Jitsukawa, S.; Katoh, M.; et al. Comparative Assessment of 24-hr Primary Skin Irritation Test and Human Patch Test Data with in Vitro Skin Irritation Tests according to OECD Test Guideline 439 (for Quasi-Drugs in Japan). J. Toxicol. Sci. 2018, 43, 751–768. DOI: 10.2131/jts.43.751.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.