109
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Experimental study on replacement behavior of crude oil by CO2 based on nuclear magnetic resonance technology

, , , , , & show all
Pages 449-460 | Received 23 Aug 2022, Accepted 04 Dec 2022, Published online: 27 Jan 2023

References

  • Simon, R.; Graue, D. J. Generalized Correlations for Predicting Solubility, Swelling and Viscosity Behavior of CO2-Crude Oil Systems. J. Petrol. Sci. Eng. 1965, 17, 102–106. DOI: 10.2118/917-PA.
  • Kamari, A.; Arabloo, M.; Shokrollahi, A.; Gharagheizi, F.; Mohammadi, A. H. Rapid Method to Estimate the Minimum Miscibility Pressure (MMP) in Live Reservoir Oil Systems during CO2 Flooding. Fuel. 2015, 153, 310–319. DOI: 10.1016/j.fuel.2015.02.087.
  • Sugai, Y.; Babadagli, T.; Sasaki, K. Consideration of an Effect of Interfacial Area between Oil and CO2 on Oil Swelling. J. Pet. Explor. Prod. Tech. 2014, 4, 1–8. DOI: 10.1007/s13202-013-0085-7.
  • Li, S. H.; Zhang, S. C.; Ma, X. F.; Zou, Y. S.; Li, N.; Chen, M.; Cao, T.; Bo, Z. Hydraulic Fractures Induced by Water-/Carbon Dioxide-Based Fluids in Tight Sandstones. Rock Mech. Rock Eng. 2019, 52, 3323–3340. DOI: 10.1007/s00603-019-01777-w.
  • Bikkina, P.; Wan, J.; Kim, Y.; Kneafsey, T. J.; Tokunaga, T. K. Influence of Wettability and Permeability Heterogeneity on Miscible CO2 Flooding Efficiency. Fuel. 2016, 166, 219–226. DOI: 10.1016/j.fuel.2015.10.090.
  • Torabi, F.; Asghari, K. Effect of Operating Pressure, Matrix Permeability and Connate Water Saturation on Performance of CO2 Huff-and-Puff Process in Matrix-Fracture Experimental Model. Fuel. 2010, 89, 2985–2990. DOI: 10.1016/j.fuel.2010.05.020.
  • Jia, H. Z.; Li, B. Y.; Lyu, Z.; Zhao, T. F.; Zhao, H. Y.; Mou, J. Y. Experimental Study on the Interaction between CO2 and Jimsar Reservoir Rocks. Chem. Eng. Oil. Gas 2021, 50, 76–80. DOI: 10.3969/j.issn.1007-3426.2021.06.013.
  • Alfarge, D.; Wei, M.; Bai, B. Factors Affecting CO2-EOR in Shale-Oil Reservoirs: Numerical Simulation Study and Pilot Tests. Energy Fuels. 2017, 31, 8462–8480. DOI: 10.1021/acs.energyfuels.7b01623.
  • Hu, Y.; Hao, M.; Chen, G.; Sun, R.; Li, S. Technologies and Practice of CO2 Flooding and Sequestration in China. Pet. Explor. Dev. 2019, 46, 753–766. DOI: 10.1016/S1876-3804(19)60233-8.
  • Duan, Y. W.; Zhan, J. Mechanisms of CO2 Water-Free Fracturing Method in Production Increasing. Drill Fluid Completion Fluid. 2017, 34, 101–105. DOI: 10.3969/j.issn.1001-5620.2017.04.019.
  • Ketzer, J. M.; Iglesias, R.; Einloft, S.; Dullius, J.; Ligabue, R.; de Lima, V. Water-rock-CO2 Interactions in Saline Aquifers Aimed for Carbon Dioxide Storage: experimental and Numerical Modeling Studies of the Rio BonitoFormation (Permian), Southern Brazil. Appl. Geochem. 2009, 24, 760–767. DOI: 10.1016/j.apgeochem.2009.01.001.
  • Dai, C. L.; Ding, X. X.; Yu, Z. H.; Sun, X.; Gao, M. W.; Zhao, M. W.; Sun, Y. P. Research Progress on the Influence of CO2 and Formation Water on Reservoir Physical Properties. Oilfield Chem. 2019, 36, 741–747. DOI: 10.19346/j.cnki.1000-4092.2019.04.033.
  • Li, B. Y.; Mou, J. Y.; Zhang, S. C.; Ma, X. F.; Zou, Y. S.; Wang, F. Experimental Study on the Interaction between CO2 and Rock during CO2 Pre-Pad Energized Fracturing Operation in Thin Interbedded Shale. Front. Energy Res. 2022, 10, 825464. DOI: 10.3389/fenrg.2022.825464.
  • Zhou, L. S.; Du, J. F.; Guo, P.; Wang, Z. H. Influence of Supercritical CO2 on the Physical Property of Unconsolidated Sandstone Reservoir. Oilfield Chem. 2015, 32, 217–221. DOI: 10.19346/j.cnki.1000-4092.2015.02.013.
  • Xiao, N.; Li, S.; Lin, M. Effect of CO2-Water-Rock Interaction on Porosity, Permeability and Pore Structure Characters of Reservoir Rock: A Case Study of 35-3 Well in Yanchang Oilfield. Oilfield Chem. 2018, 35, 85–90. DOI: 10.19346/j.cnki.1000-4092.2018.01.016.
  • Oomole, O.; Osoba, J. S. 1983 Carbon Dioxide-Dolomite Rock Interactionduring CO2 Flooding Process. In 34th Annual Technical Meeting of the Petroleum Society of CIM. Canada, May. DOI: 10.2118/83-34-17.
  • Ren, Y.; Wu, K.; He, K.; Wu, G.; Zhu, Y.; Wu, H.; Yang, Y. Application of NMR Technique to Movable Fluid of Ultra-Low Permeability and Tight Reservoir: A Case Study on the Yanchang Formation in Longdong Area, Ordos Basin. J. Mineral. Petrol. 2017, 37, 103–110. DOI: 10.19719/j.cnki.1001-6872.2017.01.012.
  • Akbarabadi, M.; Piri, M. Relative Permeability Hysteresis Andcapillary Trapping Characteristics of Supercritical CO2/Brinesystems: An Experimental Study at Reservoir Conditions. Adv. Water Resour. 2013, 52, 190–206. DOI: 10.1016/j.advwatres.2012.06.014.
  • Yu, Z. C.; Yang, S. Y.; Liu, L.; Li, S.; Yang, Y. Z. An Experimental Study on Water-Rock Interaction during Water Flooding in Formations Saturated with CO2. Acta Petrol. Sin. 2012, 33, 1032–1042. DOI: 10.7623/syxb201206016.
  • Shen, Y.; Li, C.; Ge, H.; Yang, X.; Zeng, X. Spontaneous Imbibition in Asymmetric Branch-like Throat Structures in Unconventional Reservoirs. J. Nat. Gas Scieng. 2017, 44, 328–337. DOI: 10.1016/j.jngse.2017.04.022.
  • Fei, W.; Yingqi, R.; Qiaoyun, C.; Shicheng, Z. A Pressure Drop Model of Post-Fracturing Shut-in considering the Effect of Fracturing-Fluid Imbibition and Oil Replacement. Petrol Explor. Dev. + 2021, 48, 1440–1449. DOI: 10.1016/S1876-3804(21)60300-2.
  • Jianguang, W.; Jianping, Y.; Shuhen, T. A Feasibility Study on CO2 Injection for Enhancing the Coalbed Methane Recovery. Geol. J. China Univ. 2004, 10, 463–467. DOI: 10.3969/j.issn.1006-7493.2004.03.016.
  • Qiao, R.; Li, F.; Zhang, S.; Wang, H.; Wang, F.; Zhou, T. CO2 Mass Transfer and Oil Replacement Capacity in Fractured Shale Oil Reservoirs: From Laboratory to Field. Front Earth Sc-SWITZ. 2022, 9, 1236. DOI: 10.3389/feart.2021.794534.
  • Patel, H. S.; Mehe, R. Effect of Heterogeneity on Imbibition Phenomena in Fluid Flow through Porous Media with Different Porous Materials. Nonlinear Eng. 2019, 8, 46–55. DOI: 10.1515/nleng-2017-0122.
  • Liu, Y.; Wilcox, J. CO2 Adsorption on Carbon Models of Organic Constituents of Gas Shale and Coal. Environ. Sci. Technol. 2011, 45, 809–814. DOI: 10.1021/es102700c.
  • Chen, H.; Yang, S. L.; Li, F. F.; Wang, Z. L.; Lv, S. B.; Zheng, A. A. Effects of CO2 Injection on Phase Behavior of Crude Oil. J. Disper. Sci. Technol. 2013, 34, 847–852. DOI: 10.1080/01932691.2012.712008.
  • Lei, H.; Yang, S.; Qian, K.; Chen, Y.; Li, Y.; Ma, Q. Experimental Investigation and Application of Asphaltene Precipitation Envelope. Energy Fuels. 2015, 29, 6920–6927. DOI: 10.1021/acs.energyfuels.5b01237.
  • Prykarpatski, A. K. Classical Electromagnetic Theory Revisiting: The A.M. Ampere Law and the Vacuum Field Theory Approach. Univers. J. Phys. Appl 2014, 2, 381–413. DOI: 10.13189/ujpa.2014.020804.
  • Weishaupt, D.; Kochli, V. D.; Marincek, B.; Kim, E. E. How Does MRI Work? An Introduction to the Physics and Function of Magnetic Resonance Imaging. J. Nucl. Med. 2007, 48, 1910–1910. DOI: 10.2967/jnumed.107.045104.
  • Laflamme, R.; Knill, E.; Cory, D. G.; Fortunato, E. M.; Viola, L. Introduction to NMR Quantum Information Processing. Phys. 2002, 9, 575–589. DOI: 10.48550/arXiv.quant-ph/0207172
  • Zhao, P. Q.; Sun, Z. C.; Luo, X. P.; Wang, Z. L.; Mao, Z. Q. Study on the Response Mechanisms of Nuclear Magnetic Resonance (NMR) Log in Tight Oil Reservoirs. Chin. J. Geophys. 2016, 59, 1927–1937. DOI: 10.6038/cjg20160535.
  • Wang, W.; Zhao, Y. W.; Mao, R.; Sun, Z. C.; Mou, L. W. Determination of the Starting Time for Measurement of NMR Effective Porosity in Shale Oil Reservoir: A Case Study of the Permian Lucaogou Shale Oil Reservoir, Jimusaer Sag. Oil Gas Geol. 2019, 40, 550–557. DOI: 10.11743/ogg20190310.
  • Liu, Y. H.; Wang, C. Z.; Liu, Z. H.; Wang, H.; Liu, Y. M. A Logging Method for Evaluating Oil-Bearing Property of Jimsar Shale Oil: Case Study of Sag in Junggar Basin. Nat. Gas. Geosci. 2021, 32, 1084–1091. DOI: 10.11764/j.issn.1672-1926.2021.02.007.
  • Zhang, X. G.; Liu, Y. C.; Lin, C. Y.; Zhang, T.; Huang, X.; Duan, D. P. Permeability Interpretation of Low Permeability and Tight Gas Reservoirs with Nuclear Magnetic Resonance Logging. J. China Univ. Min. Technol. 2019, 48, 1266–1275. DOI: 10.13247/j.cnki.jcumt.001042.
  • Tan, M. J. Theory and Application of Nuclear Magnetic Resonance Logging in Oil and Gas Reservoirs; China Science Publishing & Media Ltd: Beijing, 2017.
  • He, Y. D.; Mao, Z. Q.; Xiao, L. Z. An Improved Method of Using NMR T2 Distribution to Evaluate Pore Size Distribution. Chin. J. Geophys. 2005, 48, 373–378. CNKI:SUN:DQWX.0.2005-02-020.
  • Li, A. F.; Ren, X. X.; Wang, G. J.; Wang, Y. Z.; Jiang, K. L. Characterization of Pore Structure of Low Permeability Reservoirs Using a Nuclear Magnetic Resonance Method. J. China Univ. Pet. Ed. Nat. Sci. 2015, 39, 92–98. DOI: 10.3969/j.issn.1673-5005.2015.06.012.
  • He, C. The Study of Principle of Nuclear Magnetic Resonance Imaging and MR Image. J. Yunnan Univ. Nat. Sci. Ed. 2010, 32, 245–248. CNKI:SUN:YNDZ.0.2010-S1-056.
  • Wang, N.; Jin, Y. R.; Deng, H.; Wu, Y. L.; Zheng, G. L.; Li, S. Ultra-Low Field Magnetic Resonance Imaging Based on High Tc dc-SQUID. Acta. Phys. Sin. 2012, 61, 196–203. DOI: 10.7498/aps.61.213302.
  • Qi, N.; Li, B.; Chen, G.; Fang, M.; Li, X.; Liang, C. Optimum Fluid Injection Rate in Carbonate Acidizing Based on Acid Dissolution Morphology Analysis. Energy Fuels. 2017, 31, 13448–13453. DOI: 10.1021/acs.energyfuels.7b02674.
  • Li, B. Y.; Mou, J. Y.; Zhang, S. C. Experimental Investigation into Replacement of Crude Oil in Core Samples by Carbon Dioxide Based on NMR Technology. In ARMA/DGS/SEG 2nd International Geomechanics Symposium, Al Khobar, Saudi Arabia, Nov 1–4. 2021.
  • Pinto, M. L.; Mafra, L.; Guil, J. M.; Pires, J.; Rocha, J. Adsorption and Activation of CO2 by Amine-Modified Nanoporous Materials Studied by Solid-State NMR and (CO2)-C-13 Adsorption. Chem. Mater. 2011, 23, 1387–1395. DOI: 10.1021/cm1029563.
  • Mason, H. E.; Smith, M. M.; Carroll, S. A. Calibration of NMR Porosity to Estimate Permeability in Carbonate Reservoirs. Int. J. Greenh. Gas. Con. 2019, 87, 19–26. DOI: 10.1016/j.ijggc.2019.05.008.
  • Chen, C.; Wang, B.; Wang, J.; Xu, Y.; Qin, Y.; Li, X. Fracturing Technologies for Horizontal Wells in the Second-Class Shale Oil Reservoirs of the Lower Sweet Spot Areas in Jimusar. Pet. Dill. Tec. 2021, 49, 112–117. DOI: 10.11911/syztjs.2021089.
  • Cheng, L. M. Exploration of Geological Engineering Integrated 3D Fracturing Design for Horizontal Wells in Jimsar Shale Oil Reservoirs. Pet. Geo. Eng. 2021, 35, 88–92. DOI: 10.3969/j.issn.1673-8217.2021.02.018.
  • Zheng, M.; Li, J. Z.; Wang, W. G.; Li, P.; Yang, H.; Wu, X. Z.; Yu, J. D. Analysis of Oil Charging and Accumulation Processes in Tight Reservoir Beds: A Case Study of Lucaogu Formation in Jimsar Sag of Junggar Basin, NW China. Earth Sci. 2018, 43, 3719–3732. DOI: 10.3799/dqkx.2017.609.
  • Lyu, X. R.; Zhang, S. C.; Ma, X. F.; Wang, F.; Mou, J. Y. Numerical Study of Non-Isothermal Flow and Wellbore Heat Transfer Characteristics in CO2 Fracturing. Energy. 2018, 156, 555–568. DOI: 10.1016/j.energy.2018.05.126.
  • Crampon, C.; Nikitine, C.; Zaier, M.; Lépine, O.; Tanzi, C. D.; Vian, M. A.; Chemat, F.; Badens, E. Oil Extraction from Enriched Spirulina Platensis Microalgae Using Supercritical Carbon Dioxide. J. Supercrit. Fluid. 2017, 119, 289–296. DOI: 10.1016/j.supflu.2016.10.006.
  • Fan, P. W.; Zhu, W.; Lin, J.; Gao, C.; Wang, S. Factors and Regularity of Supercritical CO2 Extraction of Heavy Oil Impact. Sci. Technol. Eng. 2017, 17, 31–36. DOI: 10.3969/j.issn.1671-1815.2017.06.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.