137
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Adsorptive removal of heavy metals from water using thermally treated laterite: an approach for production of drinking water from rain water

ORCID Icon, &
Pages 596-608 | Received 23 Oct 2022, Accepted 30 Dec 2022, Published online: 12 Jan 2023

References

  • Han, R.; Zhou, B.; Huang, Y.; Lu, X.; Li, S.; Li, N. Bibliometric Overview of Research Trends on Heavy Metal Health Risks and Impacts in 1989–2018. J. Clean. Prod. 2020, 276, 123249. DOI: 10.1016/j.jclepro.2020.123249.
  • Maresca, V.; Fusaro, L.; Sorbo, S.; Siciliano, A.; Loppi, S.; Paoli, L.; Monaci, F.; Karam, E. A.; Piscopo, M.; Guida, M.; et al. Functional and Structural Biomarkers to Monitor Heavy Metal Pollution of One of the Most Contaminated Freshwater Sites in Southern Europe. Ecotoxicol. Environ. Saf. 2018, 163, 665–673. DOI: 10.1016/j.ecoenv.2018.07.122.
  • Sun, Z.; Xie, X.; Wang, P.; Hu, Y.; Cheng, H. Heavy Metal Pollution Caused by Small-Scale Metal Ore Mining Activities: A Case Study from a Polymetallic Mine in South China. Sci. Total Environ. 2018, 639, 217–227. DOI: 10.1016/j.scitotenv.2018.05.176.
  • Kumar, M.; Nagdev, R.; Tripathi, R.; Singh, V. B.; Ranjan, P.; Soheb, M.; Ramanathan, A. L. Geospatial and Multivariate Analysis of Trace Metals in Tubewell Water Using for Drinking Purpose in the Upper Gangetic Basin, India: Heavy Metal Pollution Index. Groundw. Sustain. Dev. 2019, 8, 122–133. DOI: 10.1016/j.gsd.2018.10.001.
  • Harada, M. Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Crit. Rev. Toxicol. 1995, 25, 1–24. DOI: 10.3109/10408449509089885.
  • Koedrith, P.; Kim, H.; Weon, J. I.; Seo, Y. R. Toxicogenomic Approaches for Understanding Molecular Mechanisms of Heavy Metal Mutagenicity and Carcinogenicity. Int. J. Hyg. Environ. Health 2013, 216, 587–598. DOI: 10.1016/j.ijheh.2013.02.010.
  • Zhang, X.; Wang, X. Adsorption and Desorption of Nickel (II) Ions from Aqueous Solution by a Lignocellulose/Montmorillonite Nanocomposite. PLoS One. 2015, 10, e0117077. DOI: 10.1371/journal.pone.0117077.
  • Järup, L. Hazards of Heavy Metal Contamination. Br. Med. Bull. 2003, 68, 167–182. DOI: 10.1093/bmb/ldg032.
  • Chen, Q.; Yao, Y.; Li, X.; Lu, J.; Zhou, J.; Huang, Z. Comparison of Heavy Metal Removals from Aqueous Solutions by Chemical Precipitation and Characteristics of Precipitates. J. Water Process. Eng. 2018, 26, 289–300. DOI: 10.1016/j.jwpe.2018.11.003.
  • Zhang, Y.; Duan, X. Chemical Precipitation of Heavy Metals from Wastewater by Using the Synthetical Magnesium Hydroxy Carbonate. Water Sci. Technol. 2020, 81, 1130–1136. DOI: 10.2166/wst.2020.208.
  • Sun, Y.; Zhou, S.; Pan, S. Y.; Zhu, S.; Yu, Y.; Zheng, H. Performance Evaluation and Optimization of Flocculation Process for Removing Heavy Metal. Chem. Eng. J. 2020, 385, 123911. DOI: 10.1016/j.cej.2019.123911.
  • Yao, W.; Wang, J.; Wang, P.; Wang, X.; Yu, S.; Zou, Y.; Hou, J.; Hayat, T.; Alsaedi, A.; Wang, X. Synergistic Coagulation of GO and Secondary Adsorption of Heavy Metal Ions on Ca/Al Layered Double Hydroxides. Environ. Pollut. 2017, 229, 827–836. DOI: 10.1016/j.envpol.2017.06.084.
  • Almasian, A.; Giahi, M.; Fard, G. C.; Dehdast, S. A.; Maleknia, L. Removal of Heavy Metal Ions by Modified PAN/PANI-Nylon Core-Shell Nanofibers Membrane: Filtration Performance, Antifouling and Regeneration Behavior. Chem. Eng. J. 2018, 351, 1166–1178. DOI: 10.1016/j.cej.2018.06.127.
  • Efome, J. E.; Rana, D.; Matsuura, T.; Lan, C. Q. Effects of Operating Parameters and Coexisting Ions on the Efficiency of Heavy Metal Ions Removal by Nano-Fibrous Metal-Organic Framework Membrane Filtration Process. Sci. Total Environ. 2019, 674, 355–362. DOI: 10.1016/j.scitotenv.2019.04.187.
  • Bashir, A.; Malik, L. A.; Ahad, S.; Manzoor, T.; Bhat, M. A.; Dar, G. N.; Pandith, A. H. Removal of Heavy Metal Ions from Aqueous System by Ion-Exchange and Biosorption Methods. Environ. Chem. Lett. 2019, 17, 729–754. DOI: 10.1007/s10311-018-00828-y.
  • Chen, Z.; Liang, Y.; Jia, D.; Chen, W.; Cui, Z.; Wang, X. Layered Silicate RUB-15 for Efficient Removal of UO22+ and Heavy Metal Ions by Ion-Exchange. Environ. Sci.: Nano 2017, 4, 1851–1858. DOI: 10.1039/C7EN00366H.
  • Liu, C.; Wu, T.; Hsu, P.-C.; Xie, J.; Zhao, J.; Liu, K.; Sun, J.; Xu, J.; Tang, J.; Ye, Z.; et al. Direct/Alternating Current Electrochemical Method for Removing and Recovering Heavy Metal from Water Using Graphene Oxide Electrode. ACS Nano 2019, 13, 6431–6437. DOI: 10.1021/acsnano.8b09301.
  • Xu, J.; Liu, C.; Hsu, P.-C.; Zhao, J.; Wu, T.; Tang, J.; Liu, K.; Cui, Y. Remediation of Heavy Metal Contaminated Soil by Asymmetrical Alternating Current Electrochemistry. Nat. Commun. 2019, 10, 8. DOI: 10.1038/s41467-019-10472-x.
  • Upadhyay, U.; Sreedhar, I.; Singh, S. A.; Patel, C. M.; Anitha, K. L. Recent Advances in Heavy Metal Removal by Chitosan Based Adsorbents. Carbohydr. Polym. 2021, 251, 117000. DOI: 10.1016/j.carbpol.2020.117000.
  • Zhou, G.; Luo, J.; Liu, C.; Chu, L.; Crittenden, J. Efficient Heavy Metal Removal from Industrial Melting Effluent Using Fixed-Bed Process Based on Porous Hydrogel Adsorbents. Water Res. 2018, 131, 246–254. DOI: 10.1016/j.watres.2017.12.067.
  • Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. DOI: 10.1016/j.jenvman.2010.11.011.
  • Vareda, J. P.; Valente, A. J.; Durães, L. Assessment of Heavy Metal Pollution from Anthropogenic Activities and Remediation Strategies: A Review. J. Environ. Manage. 2019, 246, 101–118. DOI: 10.1016/j.jenvman.2019.05.126.
  • Al-Saydeh, S. A.; El-Naas, M. H.; Zaidi, S. J. Copper Removal from Industrial Wastewater: A Comprehensive Review. J. Ind. Eng. Chem. 2017, 56, 35–44. DOI: 10.1016/j.jiec.2017.07.026.
  • Barakat, M. A.; Schmidt, E. Polymer-Enhanced Ultrafiltration Process for Heavy Metals Removal from Industrial Wastewater. Desalination 2010, 256, 90–93. DOI: 10.1016/j.desal.2010.02.008.
  • Burakov, A. E.; Galunin, E. V.; Burakova, I. V.; Kucherova, A. E.; Agarwal, S.; Tkachev, A. G.; Gupta, V. K. Adsorption of Heavy Metals on Conventional and Nanostructured Materials for Wastewater Treatment Purposes: A Review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. DOI: 10.1016/j.ecoenv.2017.11.034.
  • Belova, T. P. Adsorption of Heavy Metal Ions (Cu2+, Ni2+, Co2+ and Fe2+) from Aqueous Solutions by Natural Zeolite. Heliyon 2019, 5, e02320. DOI: 10.1016/j.heliyon.2019.e02320.
  • Hong, M.; Yu, L.; Wang, Y.; Zhang, J.; Chen, Z.; Dong, L.; Zan, Q.; Li, R. Heavy Metal Adsorption with Zeolites: The Role of Hierarchical Pore Architecture. Chem. Eng. J. 2019, 359, 363–372. DOI: 10.1016/j.cej.2018.11.087.
  • Gu, S.; Kang, X.; Wang, L.; Lichtfouse, E.; Wang, C. Clay Mineral Adsorbents for Heavy Metal Removal from Wastewater: A Review. Environ. Chem. Lett. 2019, 17, 629–654. DOI: 10.1007/s10311-018-0813-9.
  • Otunola, B. O.; Ololade, O. O. A Review on the Application of Clay Minerals as Heavy Metal Adsorbents for Remediation Purposes. Environ. Technol. Innov. 2020, 18, 100692. DOI: 10.1016/j.eti.2020.100692.
  • Pham, T. D.; Pham, T. T.; Phan, M. N.; Ngo, T. M. V.; Dang, V. D.; Vu, C. M. Adsorption Characteristics of Anionic Surfactant onto Laterite Soil with Differently Charged Surfaces and Application for Cationic Dye Removal. J. Mol. Liq. 2020, 301, 112456. DOI: 10.1016/j.molliq.2020.112456.
  • Zhu, D.; He, Y.; Zhang, B.; Zhang, N.; Lei, Z.; Zhang, Z.; Chen, G.; Shimizu, K. Simultaneous Removal of Multiple Heavy Metals from Wastewater by Novel Plateau Laterite Ceramic in Batch and Fixed-Bed Studies. Environ. Chem. Eng. 2021, 9, 105792. DOI: 10.1016/j.jece.2021.105792.
  • Fiyadh, S. S.; AlSaadi, M. A.; Jaafar, W. Z.; AlOmar, M. K.; Fayaed, S. S.; Mohd, N. S.; Hin, L. S.; El-Shafie, A. Review on Heavy Metal Adsorption Processes by Carbon Nanotubes. J. Clean. Prod. 2019, 230, 783–793. DOI: 10.1016/j.jclepro.2019.05.154.
  • Xu, J.; Cao, Z.; Zhang, Y.; Yuan, Z.; Lou, Z.; Xu, X.; Wang, X. A Review of Functionalized Carbon Nanotubes and Graphene for Heavy Metal Adsorption from Water: Preparation, Application, and Mechanism. Chemosphere 2018, 195, 351–364. DOI: 10.1016/j.chemosphere.2017.12.061.
  • Kyzas, G. Z.; Bomis, G.; Kosheleva, R. I.; Efthimiadou, E. K.; Favvas, E. P.; Kostoglou, M.; Mitropoulos, A. C. Nanobubbles Effect on Heavy Metal Ions Adsorption by Activated Carbon. Chem. Eng. J. 2019, 356, 91–97. DOI: 10.1016/j.cej.2018.09.019.
  • Nejadshafiee, V.; Islami, M. R. Adsorption Capacity of Heavy Metal Ions Using Sultone-Modified Magnetic Activated Carbon as a Bio-Adsorbent. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 101, 42–52. DOI: 10.1016/j.msec.2019.03.081.
  • Ramasamy, D. L.; Puhakka, V.; Repo, E.; Sillanpää, M. Selective Separation of Scandium from Iron, Aluminium and Gold Rich Wastewater Using Various Amino and Non-Amino Functionalized Silica Gels–a Comparative Study. J. Clean. Prod. 2018, 170, 890–901. DOI: 10.1016/j.jclepro.2017.09.199.
  • Shao, N.; Tang, S.; Liu, Z.; Li, L.; Yan, F.; Liu, F.; Li, S.; Zhang, Z. Hierarchically Structured Calcium Silicate Hydrate-Based Nanocomposites Derived from Steel Slag for Highly Efficient Heavy Metal Removal from Wastewater. ACS Sustainable Chem. Eng. 2018, 6, 14926–14935. DOI: 10.1021/acssuschemeng.8b03428.
  • Luo, J.; Fan, C.; Xiao, Z.; Sun, T.; Zhou, X. Novel Graphene Oxide/Carboxymethyl Chitosan Aerogels via Vacuum-Assisted Self-Assembly for Heavy Metal Adsorption Capacity. Colloids Surf. A Physicochem. Eng. Asp. 2019, 578, 123584. DOI: 10.1016/j.colsurfa.2019.123584.
  • Wei, J.; Yang, Z.; Sun, Y.; Wang, C.; Fan, J.; Kang, G.; Zhang, R.; Dong, X.; Li, Y. Nanocellulose-Based Magnetic Hybrid Aerogel for Adsorption of Heavy Metal Ions from Water. J. Mater. Sci. 2019, 54, 6709–6718. DOI: 10.1007/s10853-019-03322-0.
  • Sreedharan, V.; Krithishna, K. V.; Nidheesh, P. V. Removal of Chromium and Iron from Real Textile Wastewater by Sorption on Soils. J. Hazard. Toxic. Radioact. Waste 2017, 21, 06017002. DOI: 10.1061/(ASCE)HZ.2153-5515.0000368.
  • Mitra, S.; Thakur, L. S.; Rathore, V. K.; Mondal, P. Removal of Pb (II) and Cr (VI) by Laterite Soil from Synthetic Waste Water: Single and bi-Component Adsorption Approach. Desalin. Water Treat. 2016, 57, 18406–18416. DOI: 10.1080/19443994.2015.1088806.
  • Mukherjee, S.; Kumar, S.; Misra, A. K.; Acharya, P. C. Removal of Aqueous Nickel (II) Using Laterite as a Low‐Cost Adsorbent. Water Environ. Res. 2006, 78, 2268–2275. DOI: 10.2175/106143005x78663.
  • Saadon, S. A.; Salmiatib S. M.; Yusoffc, A. R.; Yusop, Z.; Azman, S.; Uy, D.; Syafiuddin, A. Heated Laterite as a Low-Cost Adsorbent for Arsenic Removal from Aqueous Solution. Mal. J. Fund. Appl. Sci. 2018, 14, 1–8.
  • Maiti, A.; Basu, J. K.; De, S. Experimental and Kinetic Modeling of as(V) and as(III) Adsorption on Treated Laterite Using Synthetic and Contaminated Groundwater: Effects of Phosphate, Silicate and Carbonate Ions. Chem. Eng. J. 2012, 191, 1–12. DOI: 10.1016/j.cej.2010.01.031.
  • Mohamad, N.; Abustan, I.; Mohamad, M.; Samuding, K. Metal Removal from Municipal Landfill Leachate Using Mixture of Laterite Soil, Peat Soil and Rice Husk. Mater. Today: Proc. 2018, 5, 21832–21840. DOI: 10.1016/j.matpr.2018.07.039.
  • Li, B.; Wang, H.; Wei, Y. The Reduction of Nickel from Low-Grade Nickel Laterite Ore Using a Solid-State Deoxidisation Method. Miner. Eng. 2011, 24, 1556–1562. DOI: 10.1016/j.mineng.2011.08.006.
  • Dang, V. C.; Tran, D. T.; Phan, A. T.; Pham, N. K.; Nguyen, V. N. Synergistic Effect for the Degradation of Tetracycline by rGO-Co3O4 Assisted Persulfate Activation. J. Phys. Chem. Solids 2021, 153, 110005. DOI: 10.1016/j.jpcs.2021.110005.
  • Tran, D. T.; Nguyen, V. N. rGO/Persulfate Metal-Free Catalytic System for the Degradation of Tetracycline: Effect of Reaction Parameters. Mater. Res. Express 2020, 7, 075501. DOI: http://dx.doi.org/10.1088/2053-1591/ab9e47.
  • Tran, D. T.; Nguyen, T. H.; Doan, T. H.; Dang, V. C.; Nghiem, L. D. Removal of Direct Blue 71 and Methylene Blue from Water by Graphene Oxide: effects of Charge Interaction and Experimental Parameters. Sep. Sci. Technol. 2022, 0:0, 1–12. DOI: 10.1080/01496395.2021.2013891.
  • Tran, D. T.; Pham, T. D.; Dang, V. C.; Pham, T. D.; Nguyen, M. V.; Dang, N. M.; Ha, M. N.; Nguyen, V. N.; Nghiem, L. D. A Facile Technique to Prepare MgO-Biochar Nanocomposites for Cationic and Anionic Nutrient Removal. J. Water Process. Eng. 2022, 47, 102702. DOI: 10.1016/j.jwpe.2022.102702.
  • Pham, T. D.; Nguyen, H. H.; Nguyen, N. V.; Vu, T. T.; Pham, T. N. M.; Doan, T. H. Y.; Nguyen, M. H.; Ngo, T. M. V. Adsorptive Removal of Copper by Using Surfactant Modified Laterite Soil. J. Chem. 2017, 2017, 1–10. DOI: 10.1155/2017/1986071.
  • Vithanage, V.; Jayarathna, L.; Rajapaksha, A. U.; Dissanayake, C. B.; Bootharaju, M. S.; Pradeep, T. Modeling Sorption of Fluoride on to Iron Rich Laterite. Colloids Surf. A Physicochem. Eng. Asp. 2012, 398, 69–75. DOI: 10.1016/j.colsurfa.2012.02.011.
  • Jiang, M.-Q.; Qiao, X.-Y.; Lu, X.-Q.; Chen, Z.-L. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto Natural Kaolinite Clay. Desalination 2010, 252, 33–39. DOI: 10.1016/j.desal.2009.11.005.
  • Ivanets, A.; Prozorovich, V.; Kouznetsova, T.; Dontsova, T.; Yanushevska, O.; Hosseini-Bandegharaei, A.; Srivastava, V.; Sillanpää, M. Effect of Mg2+ Ions on Competitive Metal Ions Adsorption/Desorption on Magnesium Ferrite: Mechanism, Reusability and Stability Studies. J. Hazard. Mater. 2021, 411, 124902. DOI: 10.1016/j.jhazmat.2020.124902.
  • Ivanets, A. I.; Srivastava, V.; Kitikova, N. V.; Shashkova, I. L.; Sillanpää, M. Kinetic and Thermodynamic Studies of the Co(II) and Ni(II) Ions Removal from Aqueous Solutions by Ca-Mg Phosphates. Chemosphere 2017, 171, 348–354. DOI: 10.1016/j.chemosphere.2016.12.062.
  • Taha, A. A.; Shreadah, M. A.; Ahmed, A. M.; Heiba, H. F. Multi-Component Adsorption of Pb(II), Cd(II), and Ni(II) onto Egyptian Na-Activated Bentonite; Equilibrium, Kinetics, Thermodynamics, and Application for Seawater Desalination. J. Environ. Chem. Eng. 2016, 4, 1166–1180. DOI: 10.1016/j.jece.2016.01.025.
  • Bhattacharyya, K. G.; Gupta, S. S. Influence of Acid Activation on Adsorption of Ni(II) and Cu(II) on Kaolinite and Montmorillonite: Kinetic and Thermodynamic Study. Chem. Eng. J. 2008, 136, 1–13. DOI: 10.1016/j.cej.2007.03.005.
  • Ivanets, A. I.; Srivastava, V.; Roshchina, M.; Sillanpää, M.; Prozorovich, V. G.; Pankov, V. V. Magnesium Ferrite Nanoparticles as a Magnetic Sorbent for the Removal of Mn2+, Co2+, Ni2+ and Cu2+ from Aqueous Solution. Ceram. Int. 2018, 44, 9097–9104. DOI: 10.1016/j.ceramint.2018.02.117.
  • Chen, X.; Chen, G.; Chen, L.; Chen, Y.; Lehmann, J.; McBride, M. B.; Hay, A. G. Adsorption of Copper and Zinc by Biochars Produced from Pyrolysis of Hardwood and Corn Straw in Aqueous Solution. Bioresour. Technol. 2011, 102, 8877–8884. DOI: 10.1016/j.biortech.2011.06.078.
  • Katsou, E.; Malamis, S.; Haralambous, K. J.; Loizidou, M. Use of Ultrafiltration Membranes and Aluminosilicate Minerals for Nickel Removal from Industrial Wastewater. J. Membr. Sci. 2010, 360, 234–e249. DOI: 10.1016/j.memsci.2010.05.020.
  • Çoruh, S.; Ergun, O. N. Ni2+ Removal from Aqueous Solutions Using Conditioned Clinoptilolites: Kinetic and Isotherm Studies. Environ. Prog. Sustain. Energy 2009, 28, 162–e172. DOI: 10.1002/ep.10316.
  • Kalavathy, M. H.; Karthikeyan, T.; Rajgopal, S.; Miranda, L. R. Kinetic and Isotherm Studies of Cu (II) Adsorption onto H3PO4-Activated Rubber Wood Sawdust. J. Coll. Interface Sci. 2005, 292, 354–362. DOI: 10.1016/j.jcis.2005.05.087.
  • Imamoglu, M.; Tekir, O. Removal of Copper (II) and Lead (II) Ions from Aqueous Solutions by Adsorption on Activated Carbon from a New Precursor Hazelnut Husks. Desalination 2008, 228, 108–113. DOI: 10.1016/j.desal.2007.08.011.
  • Vilar, V. J. P.; Botelho, C. M. S.; Pinheiro, J. P. S.; Domingos, R. F.; Boaventura, R. A. Copper Removal by Algal Biomass: Biosorbents Characterization and Equilibrium Modelling. J. Hazard. Mater. 2009, 163, 1113–1122. DOI: 10.1016/j.jhazmat.2008.07.083.
  • Johnson, P. D.; Watson, M. A.; Brown, J.; Jefcoat, I. A. Peanut Hull Pellets as a Single Use Sorbent for the Capture of Cu (II) from Wastewater. Waste Manage. 2002, 22, 471–480. DOI: 10.1016/S0956-053X(01)00036-8.
  • Ivanets, A. I.; Srivastava, V.; Kitikova, N. V.; Shashkova, I. L.; Sillanpää, M. Non-Apatite Ca-Mg Phosphate Sorbent for Removal of Toxic Metal Ions from Aqueous Solutions. J. Environ. Chem. Eng. 2017, 5, 2010–2017. DOI: 10.1016/j.jece.2017.03.041.
  • Meunier, N.; Laroulandie, J.; Blais, J. F.; Tyagi, R. D. Cocoa Shells for Heavy Metal Removal from Acidic Solutions. Bioresour. Technol. 2003, 90, 255–e263. DOI: 10.1016/S0960-8524(03)00129-9.
  • Najafi, F.; Moradi, O.; Rajabi, M.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V. K. Thermodynamics of the Adsorption of Nickel Ions from Aqueous Phase Using Graphene Oxide and Glycine Functionalized Graphene Oxide. J. Mol. Liq. 2015, 208, 106–e113. DOI: 10.1016/j.molliq.2015.04.033.
  • Akpomie, K. G.; Dawodu, F. A.; Adebowale, K. O. Mechanism on the Sorption of Heavy Metals from Binary-Solution by a Low Cost Montmorillonite and Its Desorption Potential. Alex. Eng. J. 2015, 54, 757–767. DOI: 10.1016/j.aej.2015.03.025.
  • Miranda, L. S.; Ayoko, G. A.; Egodawatta, P.; Goonetilleke, A. Adsorption-Desorption Behavior of Heavy Metals in Aquatic Environments: Influence of Sediment, Water and Metal Ionic Properties. J. Hazard. Mater. 2022, 421, 126743. DOI: 10.1016/j.jhazmat.2021.126743.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.