145
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The influences of Na+, Ca2+ on the water-in-oil Pickering emulsion stabilized by stearic acid modified hydrophobic calcium carbonate particles

, , , , , , , , & show all
Pages 710-719 | Received 06 Nov 2022, Accepted 02 Feb 2023, Published online: 17 Feb 2023

References

  • Chevalier, Y.; Bolzinger, M.-A. Emulsions Stabilized with Solid Nanoparticles: Pickering Emulsions. Colloids Surf. A 2013, 439, 23–34. DOI: 10.1016/j.colsurfa.2013.02.054.
  • Chen, T.; Colver, P. J.; Bon, S. A. F. Organic–Inorganic Hybrid Hollow Spheres Prepared from TiO2-Stabilized Pickering Emulsion Polymerization. Adv. Mater. 2007, 19, 2286–2289. DOI: 10.1002/adma.200602447.
  • Zhang, K.; Wu, W.; Meng, H.; Guo, K.; Chen, J. F. Pickering Emulsion Polymerization: Preparation of Polystyrene/Nano-SiO2 Composite Microspheres with Core-Shell Structure. Powder Technol. 2009, 190, 393–400. DOI: 10.1016/j.powtec.2008.08.022.
  • Wang, X.; He, J.; Ma, L.; Yan, B.; Shi, L.; Ran, R. Self-Assembling Graphene Oxide/Modified Amphipathic Hydroxyethyl Cellulose Hybrid Stabilized Pickering Emulsion Polymerization for Functional Hydrogel. Colloids Surf. A 2021, 610, 125742. DOI: 10.1016/j.colsurfa.2020.125742.
  • Xiaoyong, P.; Yanyan, D.; Lian, W.; Chuntang, L.; Gang, Z.; Bing, Z. Particle-Stabilized High Internal Phase Emulsions as Templates for Porous Nanocomposite Materials. In 2012 Third International Conference on Digital Manufacturing & Automation, 2012, 602–607. DOI: 10.1109/icdma.2012.143.
  • Marefati, A.; Bertrand, M.; Sjöö, M.; Dejmek, P.; Rayner, M. Storage and Digestion Stability of Encapsulated Curcumin in Emulsions Based on Starch Granule Pickering Stabilization. Food Hydrocolloids 2017, 63, 309–320. DOI: 10.1016/j.foodhyd.2016.08.043.
  • Lim, H.-P.; Ho, K.-W.; Surjit Singh, C. K.; Ooi, C.-W.; Tey, B.-T.; Chan, E.-S. Pickering Emulsion Hydrogel as a Promising Food Delivery System: Synergistic Effects of Chitosan Pickering Emulsifier and Alginate Matrix on Hydrogel Stability and Emulsion Delivery. Food Hydrocolloids 2020, 103, 105659. DOI: 10.1016/j.foodhyd.2020.105659.
  • Zhang, S.; Holmes, M.; Ettelaie, R.; Sarkar, A. Pea Protein Microgel Particles as Pickering Stabilisers of Oil-in-Water Emulsions: Responsiveness to Ph and Ionic Strength. Food Hydrocolloids 2020, 102, 105583. DOI: 10.1016/j.foodhyd.2019.105583.
  • Bago Rodriguez, A. M.; Schober, L.; Hinzmann, A.; Groger, H.; Binks, B. P. Effect of Particle Wettability and Particle Concentration on the Enzymatic Dehydration of N-Octanaloxime in Pickering Emulsions. Angew. Chem. Int. Ed. 2021, 60, 1450–1457. DOI: 10.1002/anie.202013171.
  • Jiang, H.; Liu, L.; Li, Y.; Yin, S.; Ngai, T. Inverse Pickering Emulsion Stabilized by Binary Particles with Contrasting Characteristics and Functionality for Interfacial Biocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 4989–4997. DOI: 10.1021/acsami.9b16117.
  • Jiang, H.; Li, Y.; Hong, L.; Ngai, T. Submicron Inverse Pickering Emulsions for Highly Efficient and Recyclable Enzymatic Catalysis. Chem. Asian J. 2018, 13, 3533–3539. DOI: 10.1002/asia.201800853.
  • Aveyard, R.; Binks, B. P.; Clint, J. H. Emulsions Stabilised Solely by Colloidal Particles. Adv. Colloid Interface Sci. 2003, 100–102, 503–546. DOI: 10.1016/S0001-8686(02)00069-6.
  • Juárez, J. A.; Whitby, C. P. Oil-in-Water Pickering Emulsion Destabilisation at Low Particle Concentrations. J. Colloid Interface Sci. 2012, 368, 319–325. DOI: 10.1016/j.jcis.2011.11.029.
  • Wang, B.; Wang, M.; Zhang, H.; Sobal, N. S.; Tong, W.; Gao, C.; Wang, Y.; Giersig, M.; Wang, D.; Möhwald, H. Effect of Electrolyte in Silicone Oil-in-Water Emulsions Stabilised by Fumed Silica Particles. Phys. Chem. Chem. Phys. 2007, 9, 6313–6318. DOI: 10.1039/b705094a.
  • Yin, G.; Zheng, Z.; Wang, H.; Du, Q.; Zhang, H. Preparation of Graphene Oxide Coated Polystyrene Microspheres by Pickering Emulsion Polymerization. J. Colloid Interface Sci. 2013, 394, 192–198. DOI: 10.1016/j.jcis.2012.11.024.
  • Gonzalez Ortiz, D.; Pochat-Bohatier, C.; Cambedouzou, J.; Balme, S.; Bechelany, M.; Miele, P. Inverse Pickering Emulsion Stabilized by Exfoliated Hexagonal-Boron Nitride (h-BN). Langmuir 2017, 33, 13394–13400. DOI: 10.1021/acs.langmuir.7b03324.
  • Zhang, S.; Zhou, Y.; Yang, C. Pickering Emulsions Stabilized by the Complex of Polystyrene Particles and Chitosan. Colloids Surf. A 2015, 482, 338–344. DOI: 10.1016/j.colsurfa.2015.06.029.
  • Tan, Y.; Xu, K.; Liu, C.; Li, Y.; Lu, C.; Wang, P. Fabrication of Starch-Based Nanospheres to Stabilize Pickering Emulsion. Carbohydr. Polym. 2012, 88, 1358–1363. DOI: 10.1016/j.carbpol.2012.02.018.
  • Zhu, F. Starch Based Pickering Emulsions: Fabrication, Properties, and Applications. Trends Food Sci. Technol. 2019, 85, 129–137. DOI: 10.1016/j.tifs.2019.01.012.
  • Zhang, Z.; Liu, F.; Lin, Y. ZnO@PNIPAM Nanospheres Synthesis from Inverse Pickering Miniemulsion Polymerization. Colloids Surf. A 2020, 603, 125264. DOI: 10.1016/j.colsurfa.2020.125264.
  • Huang, F.; Liang, Y.; He, Y. On the Pickering Emulsions Stabilized by Calcium Carbonate Particles with Various Morphologies. Colloids Surf. A 2019, 580, 123722. DOI: 10.1016/j.colsurfa.2019.123722.
  • Cui, Z. G.; Cui, C. F.; Zhu, Y.; Binks, B. P. Multiple Phase Inversion of Emulsions Stabilized by in Situ Surface Activation of CaCO3 Nanoparticles via Adsorption of Fatty Acids. Langmuir 2012, 28, 314–320. DOI: 10.1021/la204021v.
  • Chen, Z.; Yang, X.; Wang, B.; Dai, J.; Bai, Z. Study on Influencing Factors of Pickering Emulsion Stabilized by Modified Montmorillonite and Fatty Alcohol Polyoxyethylene Ether. J. Dispersion Sci. Technol. 2021, 43, 1–9. DOI: 10.1080/01932691.2021.1884088.
  • Mwangi, W. W.; Ho, K.-W.; Tey, B.-T.; Chan, E.-S. Effects of Environmental Factors on the Physical Stability of Pickering-Emulsions Stabilized by Chitosan Particles. Food Hydrocolloids 2016, 60, 543–550. DOI: 10.1016/j.foodhyd.2016.04.023.
  • Du Le, H.; Loveday, S. M.; Singh, H.; Sarkar, A. Pickering Emulsions Stabilised by Hydrophobically Modified Cellulose Nanocrystals: Responsiveness to pH and Ionic Strength. Food Hydrocolloids 2020, 99, 105344. DOI: 10.1016/j.foodhyd.2019.105344.
  • Sadeghpour, A.; Pirolt, F.; Glatter, O. Submicrometer-Sized Pickering Emulsions Stabilized by Silica Nanoparticles with Adsorbed Oleic Acid. Langmuir 2013, 29, 6004–6012. DOI: 10.1021/la4008685.
  • He, Y.; Li, K. Novel Janus Cu2(OH)2CO3/CuS Microspheres Prepared via a Pickering Emulsion Route. J. Colloid Interface Sci. 2007, 306, 296–299. DOI: 10.1016/j.jcis.2006.10.070.
  • Bai, R. X.; Xue, L. H.; Dou, R. K.; Meng, S. X.; Xie, C. Y.; Zhang, Q.; Guo, T.; Meng, T. Light-Triggered Release from Pickering Emulsions Stabilized by TiO2 Nanoparticles with Tailored Wettability. Langmuir 2016, 32, 9254–9264. DOI: 10.1021/acs.langmuir.6b02329.
  • Xiao, M.; Xu, A.; Zhang, T.; Hong, L. Tailoring the Wettability of Colloidal Particles for Pickering Emulsions via Surface Modification and Roughness. Front. Chem. 2018, 6, 225. DOI: 10.3389/fchem.2018.00225.
  • Briggs, N.; Raman, A. K. Y.; Barrett, L.; Brown, C.; Li, B.; Leavitt, D.; Aichele, C. P.; Crossley, S. Stable Pickering Emulsions Using Multi-Walled Carbon Nanotubes of Varying Wettability. Colloids Surf. A 2018, 537, 227–235. DOI: 10.1016/j.colsurfa.2017.10.010.
  • Binks, B. P.; Lumsdon, S. O. Influence of Particle Wettability on the Type and Stability of Surfactant-Free Emulsions. Langmuir 2000, 16, 8622–8631. DOI: 10.1021/la000189s.
  • Strand, S.; Høgnesen, E. J.; Austad, T. Wettability Alteration of Carbonates—Effects of Potential Determining Ions (Ca2+ and So42−) and Temperature. Colloids Surf. A 2006, 275, 1–10. DOI: 10.1016/j.colsurfa.2005.10.061.
  • Cui, Z. G.; Cui, Y. Z.; Cui, C. F.; Chen, Z.; Binks, B. P. Aqueous Foams Stabilized by in Situ Surface Activation of Caco3 Nanoparticles via Adsorption of Anionic Surfactant. Langmuir 2010, 26, 12567–12574. DOI: 10.1021/la1016559.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.