126
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Bioremoval of methylene blue dye using chitosan stabilized Pickering emulsion liquid membrane: optimization by Box–Behnken response surface design

, &
Pages 810-818 | Received 28 Sep 2022, Accepted 11 Feb 2023, Published online: 06 Mar 2023

References

  • Mia, R.; Selim, M.; Shamim, A. M.; Miraduzzaman, C.; Suraiya, S.; Manijah, A.; Musfic, H.; Rozina, A.; Shuvo, D.; Hasnun, N. Review on Various Types of Pollution Problem in Textile Dyeing & Printing Industries of Bangladesh and Recommandation for Mitigation. J. Text. Eng. Fash. Technol. 2019, 5, 220–226.
  • Desore, A.; Narula, S. A. An Overview on Corporate Response towards Sustainability Issues in Textile Industry. Environ. Dev. Sustain. 2018, 20, 1439–1459. DOI: 10.1007/s10668-017-9949-1.
  • Al-Fawwaz, A. T.; Abdullah, M. Decolorization of Methylene Blue and Malachite Green by Immobilized Desmodesmus sp. isolated from North Jordan. IJESD 2016, 7, 95–99. DOI: 10.7763/IJESD.2016.V7.748.
  • Rajamohan, N.; Rajasimman, M. Kinetic Modeling of Dye Effluent Biodegradation by Pseudomonas stutzeri. Eng. Technol. Appl. Sci. Res. 2013, 3, 387–390. DOI: 10.48084/etasr.276.
  • Xu, X. R.; Li, H. B.; Wang, W. H.; Gu, J. D. Decolorization of Dyes and Textile Wastewater by Potassium Permanganate. Chemosphere 2005, 59, 893–898. DOI: 10.1016/j.chemosphere.2004.11.013.
  • Gbekeloluwa, B. Biosorption of Dye from Textile Wastewater Effluent onto Alkali Treated Dried Sunflower Seed Hull and Design of a Batch Adsorber. J. Environ. Chem. Eng. 2015, 3, 2647–2661.
  • Shindhal, T.; Rakholiya, P.; Varjani, S.; Pandey, A.; Ngo, H. H.; Guo, W.; Yong, H. N.; Taherzadeh, M. A Critical Review on Advances in the Practices and Perspectives for the Treatment of Dye Industry Wastewater. J. Bioengineered 2021, 12, 70–87. DOI: 10.1080/21655979.2020.1863034.
  • Jerold, M.; Sivasubramanian, V. Biosorption of Malachite Green from Aqueous Solution Using Brown Marine Macro Algae Sargassum Swartzii. Desalin. Water Treat. 2016, 57, 25288–25300. DOI: 10.1080/19443994.2016.1156582.
  • Schwarzenbach, R. P.; Egli, T.; Hofstetter, T. B.; Von, G. U.; Wehrli, B. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. DOI: 10.1146/annurev-environ-100809-125342.
  • Chandanshive, V. V.; Rane, N. R.; Tamboli, A. S.; Gholave, A. R.; Khandare, R. V.; Govindwar, S. P. Co-Plantation of Aquatic Macrophytes Typha angustifolia and Paspalum scrobiculatum for Effective Treatment of Textile Industry Effluent. J. Hazard Mater. 2017, 338, 47–56. DOI: 10.1016/j.jhazmat.2017.05.021.
  • Sarkar, S.; Banerjee, A.; Halder, U.; Biswas, R.; Bandopadhyay, R. Degradation of Synthetic Azo Dyes of Textile Industry: A Sustainable Approach Using Microbial Enzymes. Water Conserv. Sci. Eng. 2017, 2, 121–131. DOI: 10.1007/s41101-017-0031-5.
  • Muthuraman, G.; Teng, T. T. Extraction and Recovery of Rhodamine B, Methyl Violet and Methylene Blue from Industrial Wastewater Using D2EHPA as an Extractant. J. Ind. Eng. Chem. 2009, 15, 841–846. DOI: 10.1016/j.jiec.2009.09.010.
  • Verma, A. K.; Dash, R. R.; Bhunia, P. A Review on Chemical Coagulation/Flocculation Technologies for Removal of Colour from Textile Wastewaters. J. Environ. Manage. 2012, 93, 154–168. DOI: 10.1016/j.jenvman.2011.09.012.
  • Chakrabarti, S.; Dutta, B. K. Photocatalytic Degradation of Model Textile Dyes in Wastewater Using ZnO as Semiconductor Catalyst. J. Hazard Mater. 2004, 112, 269–278. DOI: 10.1016/j.jhazmat.2004.05.013.
  • Mohammed, M. A.; Noori, W. O.; Sabbar, H. A. Application of Emulsion Liquid Membrane Process for Cationic Dye Extraction. IJCPE 2020, 21, 39–44. DOI: 10.31699/IJCPE.2020.3.5.
  • S, S.; Rajasimman, M. Development of a Green Emulsion Liquid Membrane Using Waste Cooking Oil as Diluent for the Extraction of Arsenic from Aqueous Solution – Screening, Optimization, Kinetics and Thermodynamics Studies. J. Water Process Eng. 2021, 41, 102055. DOI: 10.1016/j.jwpe.2021.102055.
  • Sujatha, S.; Rajamohan, N.; Anbazhagan, S.; Vanithasri, M.; Rajasimman, M. Extraction of Nickel Using a Green Emulsion Liquid Membrane–Process Intensification, Parameter Optimization and Artificial Neural Network Modeling. Chem. Eng. Process. Process Intensif. 2021, 165, 108444. DOI: 10.1016/j.cep.2021.108444.
  • Zereshki, S.; Shokri, A.; Karimi, A. Application of a Green Emulsion Liquid Membrane for Removing Copper from Contaminated Aqueous Solution: Extraction, Stability, and Breakage Study Using Response Surface Methodology. J. Mol. Liq. 2021, 325, 115251. DOI: 10.1016/j.molliq.2020.115251.
  • Dzygiel, P.; Wieczorek, P. Extraction of Amino Acids with Emulsion Liquid Membranes Using Industrial Surfactants and Lecithin as Stabilisers. J. Membr. Sci. 2000, 172, 223–232. DOI: 10.1016/S0376-7388(00)00330-6.
  • Frasca, S.; Couvreur, P.; Seiller, M.; Pareau, D.; Lacour, B.; Stambouli, M.; Grossiord, J. L. Paraquat Detoxication with Multiple Emulsions. Int J Pharm 2009, 380, 142–146. DOI: 10.1016/j.ijpharm.2009.07.016.
  • Rosly, M. B.; Jusoh, N.; Othman, N.; Rahman, H. A.; Noah, N. F. M.; Sulaiman,.; R. N.; R. Effect and Optimization Parameters of Phenol Removal in Emulsion Liquid Membrane Process via Fractional-Factorial Design. Chem. Eng. Res. Des. 2019, 145, 268–278. 2019DOI: 10.1016/j.cherd.2019.03.007.
  • Cahn, R. P.; Li, N. N. Separation of Phenol from Wastewater by the Liquid Membrane Technique. Sep. Sci. 1974, 9, 505–519. DOI: 10.1080/00372367408055596.
  • Ahmad, A. L.; Kusumastuti, A.; Derek, C. J. C.; Ooi, B. S. Emulsion Liquid Membrane for Heavy Metal Removal: An Overview on Emulsion Stabilization and Destabilization. Chem. Eng. J. 2011, 171, 870–882. DOI: 10.1016/j.cej.2011.05.102.
  • Lu, J. G.; Li, X.; Zhao, Y. X.; Ma, H. L.; Wang, L. F.; Wang, X. Y.; Yu, Y. F.; Shen, T. Y.; Xu, H.; Zhang, Y. T. CO2 Capture by Ionic Liquid Membrane Absorption for Reduction of Emissions of Greenhouse Gas. Environ. Chem. Lett. 2019, 17, 1031–1038. DOI: 10.1007/s10311-018-00822-4.
  • Kusumastuti, A.; Anis, S.; Syamwil, R.; Ahmad, A. L, Universitas Negeri Semarang, Indonesia Emulsion Liquid Membrane for Textile Dyes Removal: Extraction Process. JPS 2018, 29, 175–184. DOI: 10.21315/jps2018.29.s2.13.
  • Kumar, A.; Thakur, A.; Panesar, P. S. Lactic Acid Extraction Using Environmentally Benign Green Emulsion Ionic Liquid Membrane. J. Cleaner Prod. 2018, 181, 574–583. DOI: 10.1016/j.jclepro.2018.01.263.
  • Björkegren, S.; Fassihi, K. R.; Martinelli, A.; Jayakumar, N. S.; Hashim, M. A. A New Emulsion Liquid Membrane Based on a Palm Oil for the Extraction of Heavy Metals. Membranes (Basel) 2015, 5, 168–179. DOI: 10.3390/membranes5020168.
  • Shirasangi, R.; Kohli, H. P.; Gupta, S.; Chakraborty, M. Separation of Methylparaben by Emulsion Liquid Membrane: optimization, Characterization, Stability and Multiple Cycles Studies. Colloids Surf. A 2020, 597, 124761. DOI: 10.1016/j.colsurfa.2020.124761.
  • Zhu, G.; Wang, Y.; Huang, Q.; Zhang, R.; Chen, D.; Wang, S.; Yang, X. Emulsion Liquid Membrane for Simultaneous Extraction and Separation of Copper from Nickel in Ammoniacal Solutions. Miner. Eng. 2022, 188, 107849. DOI: 10.1016/j.mineng.2022.107849.
  • Khadivi, M.; Javanbakht, V. Emulsion Ionic Liquid Membrane Using Edible Paraffin Oil for Lead Removal from Aqueous Solutions. J. Mol. Liq. 2020, 319, 114137. DOI: 10.1016/j.molliq.2020.114137.
  • Daraei, P.; Zereshki, S.; Shokri, A. Application of Nontoxic Green Emulsion Liquid Membrane Prepared by Sunflower Oil for Water Decolorization: process Optimization by Response Surface Methodology. J. Ind. Eng. Chem. 2019, 77, 215–222. DOI: 10.1016/j.jiec.2019.04.039.
  • Shokri, A.; Daraei, P.; Zereshki, S. Water Decolorization Using Waste Cooking Oil: An Optimized Green Emulsion Liquid Membrane by RSM. J. Water Process. Eng. 2020, 33, 101021. DOI: 10.1016/j.jwpe.2019.101021.
  • Zaheri, P.; Davarkhah, R. Rapid Removal of Uranium from Aqueous Solution by Emulsion Liquid Membrane Containing Thenoyltrifluoroacetone. J. Environ. Chem. Eng. 2017, 5, 4064–4068. DOI: 10.1016/j.jece.2017.07.076.
  • Zembyla, M.; Murray, B. S.; Sarkar, A. Water-in-Oil Emulsions Stabilized by Surfactants, Biopolymers and/or Particles: A Review. Trends Food Sci. Technol. 2020, 104, 49–59. DOI: 10.1016/j.tifs.2020.07.028.
  • Sharkawy, A.; Barreiro, F.; Rodrigues, A. Pickering Emulsions Stabilized with Chitosan/Gum Arabic Particles: Effect of Chitosan Degree of Deacetylation on the Physicochemical Properties and Cannabidiol (CBD) Topical Delivery. J. Mol. Liq. 2022, 355, 118993. DOI: 10.1016/j.molliq.2022.118993.
  • Sharkawy, A.; Silva, A. M.; Rodrigues, F.; Barreiro, F.; Rodrigues, A. Pickering Emulsions Stabilized with Chitosan/Collagen Peptides Nanoparticles as Green Topical Delivery Vehicles for Cannabidiol (CBD). Colloids Surf. A Physicochem. Eng. Asp 2021, 631, 127677. DOI: 10.1016/j.colsurfa.2021.127677.
  • Tang, Y.; Gao, C.; Zhang, Y.; Tang, X. The Microstructure and Physiochemical Stability of Pickering Emulsions Stabilized by Chitosan Particles Coating with Sodium Alginate: Influence of the Ratio between Chitosan and Sodium Alginate. Int. J. Biol. Macromol. 2021, 183, 1402–1409. DOI: 10.1016/j.ijbiomac.2021.05.098.
  • Ahonkhai, E. I.; Arhewoh, I. M.; Okhamafe, A. O. Effect of Solvent Type and Drying Method on Protein Retention in Chitosan-Alginate Microcapsules. Trop. J. Pharm. Res. 2007, 5, 583–588.
  • de Souza Soares, L.; Milião, G. L.; Tonole, B.; de Souza, G. B.; Soares, N. D. F. F.; de Carvalho Teixeira, A. V. N.; dos Reis Coimbra, J. S.; de Oliveira, E. B. Chitosan Dispersed in Aqueous Solutions of Acetic, Glycolic, Propionic or Lactic Acid as a Thickener/Stabilizer Agent of O/W Emulsions Produced by Ultrasonic Homogenization. Ultrason. Sonochem. 2019, 59, 104754. DOI: 10.1016/j.ultsonch.2019.104754.
  • Bahloul, L.; Bendebane, F.; Djenouhat, M.; Meradi, H.; Ismail, F. Effects and Optimization of Operating Parameters of Anionic Dye Extraction from an Aqueous Solution Using an Emulsified Liquid Membrane: Application of Designs of Experiments. J. Taiwan. Inst. Chem. Eng. 2016, 59, 26–32. DOI: 10.1016/j.jtice.2015.07.013.
  • Jerold, M.; Sivasubramanian, V. Box–Behnken Design Optimization of Malachite Green Dye Biosortpion Using Nano Zero Valent Iron Sargassum Swartzii Biocomposite. Part. Sci. Technol. 2018, 36, 386–393. DOI: 10.1080/02726351.2016.1267290.
  • Chaouchi, S.; Hamdaoui, O. Acetaminophen Extraction by Emulsion Liquid Membrane Using Aliquat 336 as Extractant. Sep. Purif. Technol. 2014, 129, 32–40. DOI: 10.1016/j.seppur.2014.03.021.
  • Thakur, A.; Jawa.; G. K.; Purtika. Screening of Parameters and Optimization for Green Recovery of Anionic Dye by Nanoparticle-Ionic Liquid-Based Green Emulsion Liquid Membrane Using Response Surface Methodology. Chem. Eng. Process.: Process Intensif. 2022, 181, 109156. DOI: 10.1016/j.cep.2022.109156.
  • Weiss, J.; Muschiolik, G. Factors Affecting the Droplet Size of Water‐in‐Oil Emulsions (W/O) and the Oil Globule Size in Water‐in‐Oil‐in‐Water Emulsions (W/O/W). J. Dispers. Sci. Technol. 2007, 28, 703–716. DOI: 10.1080/01932690701341819.
  • Sengupta, B.; Sengupta, R.; Subrahmanyam, N. Copper Extraction into Emulsion Liquid Membranes Using LIX 984N-C®. Hydrometallurgy 2006, 81, 67–73. DOI: 10.1016/j.hydromet.2005.10.002.
  • Dâas, A.; Hamdaoui, O. Extraction of Anionic Dye from Aqueous Solutions by Emulsion Liquid Membrane. J. Hazard Mater. 2010, 178, 973–981. DOI: 10.1016/j.jhazmat.2010.02.033.
  • Zaulkiflee, N. D.; Ahmad, A. L.; Sugumaran, J.; Lah,.; N. F.; C. Stability Study of Emulsion Liquid Membrane via Emulsion Size and Membrane Breakage on Acetaminophen Removal from Aqueous Solution Using TOA. ACS Omega 2020, 5, 23892–23897. DOI: 10.1021/acsomega.0c03142.
  • Ayan, E.; Baylan, N.; Çehreli, S. Removal of Propionic Acid from Aqueous Solutions by Tributyl Phosphate in a Room‐Temperature Ionic Liquid Using Box-Behnken Design. J. Ind. Eng. Chem. 2023, 119, 499–505. DOI: 10.1016/j.jiec.2022.11.073.
  • Mulay, A.; Rathod, V. K. Ultrasound-Assisted Synthesis of Ethyl Hexanoate Using Heterogeneous Catalyst: Optimization Using Box-Behnken Design. J. Indian Chem. Soc. 2022, 99, 100573. DOI: 10.1016/j.jics.2022.100573.
  • Shokri, A.; Bayat, A.; Mahanpoor, K. Employing Fenton-like Process for the Remediation of Petrochemical Wastewater through Box–Behnken Design Method. DWT 2019, 166, 135–143. DOI: 10.5004/dwt.2019.24634.
  • Dickinson, E. Hydrocolloids Acting as Emulsifying Agents–How Do They Do It? Food Hydrocoll. 2018, 78, 2–14. DOI: 10.1016/j.foodhyd.2017.01.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.