222
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Silver nanoparticles doped polymethylmethacrylate[Ag/PMMA] nanocomposite as smart material for non-enzymatic glucose sensor

, ORCID Icon, &
Pages 1120-1128 | Received 01 Dec 2022, Accepted 28 Mar 2023, Published online: 08 Apr 2023

References

  • Rong, L.-Q.; Yang, C.; Qian, Q.-Y.; Xia, X.-H. Study of the Nonenzymatic Glucose Sensor Based on Highly Dispersed Pt Nanoparticles Supported on Carbon Nanotubes. Talanta 2007, 72, 819–824. DOI: 10.1016/j.talanta.2006.12.037.
  • Naderi Asrami, P.; Aberoomand Azar, P.; Saber Tehrani, M.; Mozaffari, S. A. Glucose Oxidase/nano-ZnO/Thin Film Deposit FTO as an Innovative Clinical Transducer: A Sensitive Glucose Biosensor. Front. Chem. 2020, 8, 503. DOI: 10.3389/fchem.2020.00503.
  • Zaidi, S. A.; Shin, J. H. Recent Developments in Nanostructure Based Electrochemical Glucose Sensors. Talanta 2016, 149, 30–42. DOI: 10.1016/j.talanta.2015.11.033.
  • Dhiman, T. K.; Poddar, M.; Lakshmi, G.; Kumar, R.; Solanki, P. R. Non-Enzymatic and Rapid Detection of Glucose on PVA-CuO Thin Film Using ARDUINO UNO Based Capacitance Measurement Unit. Biomed. Microdevices 2021, 23, 1–11. DOI: 10.1007/s10544-021-00568-x.
  • Rahman, M.; Ahammad, A.; Jin, J.-H.; Ahn, S. J.; Lee, J.-J. A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides. Sensors (Basel) 2010, 10, 4855–4886. DOI: 10.3390/s100504855.
  • Wu, Z.; Sun, L.-P.; Zhou, Z.; Li, Q.; Huo, L.-H.; Zhao, H. Efficient Nonenzymatic H2O2 Biosensor Based on ZIF-67 MOF Derived Co Nanoparticles Embedded N-Doped Mesoporous Carbon Composites. Sens. Actuators B: Chem. 2018, 276, 142–149. DOI: 10.1016/j.snb.2018.08.100.
  • Zhang, W.-D.; Chen, J.; Jiang, L.-C.; Yu, Y.-X.; Zhang, J.-Q. A Highly Sensitive Nonenzymatic Glucose Sensor Based on NiO-Modified Multi-Walled Carbon Nanotubes. Microchim. Acta 2010, 168, 259–265. DOI: 10.1007/s00604-010-0288-2.
  • Narang, J.; Chauhan, N.; Pundir, C. A Non-Enzymatic Sensor for Hydrogen Peroxide Based on Polyaniline, Multiwalled Carbon Nanotubes and Gold Nanoparticles Modified Au Electrode. Analyst 2011, 136, 4460–4466. DOI: 10.1039/c1an15543a.
  • Liu, M.; Liu, R.; Chen, W. Graphene Wrapped Cu2O Nanocubes: non-Enzymatic Electrochemical Sensors for the Detection of Glucose and Hydrogen Peroxide with Enhanced Stability. Biosens. Bioelectron. 2013, 45, 206–212. DOI: 10.1016/j.bios.2013.02.010.
  • Maduraiveeran, G.; Jin, W. Functional Nanomaterial-Derived Electrochemical Sensor and Biosensor Platforms for Biomedical Applications. In Handbook of Nanomaterials in Analytical Chemistry; Elsevier: Amsterdam, Netherlands, 2020; pp. 297–327.
  • Kureha, T.; Nagase, Y.; Suzuki, D. High Reusability of Catalytically Active Gold Nanoparticles Immobilized in Core–Shell Hydrogel Microspheres. ACS Omega 2018, 3, 6158–6165. DOI: 10.1021/acsomega.8b00819.
  • Dat, N. M.; Long, P. N. B.; Nhi, D. C. U.; Minh, N. N.; Duy, L. M.; Quan, L. N.; Nam, H. M.; Phong, M. T.; Hieu, N. H. Synthesis of Silver/Reduced Graphene Oxide for Antibacterial Activity and Catalytic Reduction of Organic Dyes. Synthetic Met. 2020, 260, 116260. DOI: 10.1016/j.synthmet.2019.116260.
  • Al-Thabaiti, S. A.; Khan, Z. Role of Ionic Surfactants on the Plasmonic Oxidative Dissolution of Silver Nanoparticles by Ferric Ions. J. Mol. Liq. 2021, 334, 115992. DOI: 10.1016/j.molliq.2021.115992.
  • Kang, H.; Buchman, J. T.; Rodriguez, R. S.; Ring, H. L.; He, J.; Bantz, K. C.; Haynes, C. L. Stabilization of Silver and Gold Nanoparticles: preservation and Improvement of Plasmonic Functionalities. Chem. Rev. 2018, 119, 664–699. DOI: 10.1021/acs.chemrev.8b00341.
  • Li, Y.; Ma, X.; Ma, J.; Zhang, Z.; Niu, Z.; Chen, F. Facile Fabrication and SERS Performance of Polymer/Ag Core-Shell Microspheres via the Reverse Breath Figure Accompanied by in Situ Reduction. Polymer 2022, 253, 125003. DOI: 10.1016/j.polymer.2022.125003.
  • Alamry, K. A.; Khan, A.; Hussein, M. A. Fabrication and Enzyme-Free Electrochemical Sensing Response of Polyaniline/Silver/Clove Modified Composite Electrode. Synth. Met 2022, 285, 117023. DOI: 10.1016/j.synthmet.2022.117023.
  • Li, Z.; Zhao, Y.; Li, S.; Tu, Y.; Huang, Z.; Lin, S.; Hong, L.; Hu, J. Facile Preparation of Raspberry-like Mesoporous Poly (Styrene-co-Divinylbenzene)/Ag Composite Particles for Antibacterial Superhydrophobic Surfaces and Liquid Marbles. Colloids Surfaces A 2022, 635, 128014. DOI: 10.1016/j.colsurfa.2021.128014.
  • Kashihara, K.; Uto, Y.; Nakajima, T. Size-Controlled in Situ Synthesis of Metal–Polymer Nanocomposite Films Using a CO2 Laser. Polym. Bull. 2021, 78, 6969–6981. DOI: 10.1007/s00289-020-03481-0.
  • Bhatia, P.; Yadav, P.; Gupta, B. D. Surface Plasmon Resonance Based Fiber Optic Hydrogen Peroxide Sensor Using Polymer Embedded Nanoparticles. Sens. Actuat. B: Chem. 2013, 182, 330–335. DOI: 10.1016/j.snb.2013.03.021.
  • Mahmoud, M. A.; El-Sayed, M. A. Different Plasmon Sensing Behavior of Silver and Gold Nanorods. J. Phys. Chem. Lett. 2013, 4, 1541–1545. DOI: 10.1021/jz4005015.
  • Mathiesen, D.; Vogtmann, D.; Dupaix, R. Stress-Relaxation Behavior of Poly (Methyl Methacrylate)(PMMA) across the Glass Transition Temperature. In Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Vol. 2; Springer Nature: Switzerland, 2014; pp. 9–15.
  • Vollrath, A.; Pretzel, D.; Pietsch, C.; Perevyazko, I.; Schubert, S.; Pavlov, G. M.; Schubert, U. S. Preparation, Cellular Internalization, and Biocompatibility of Highly Fluorescent PMMA Nanoparticles. Macromol. Rapid Commun. 2012, 33, 1791–1797. DOI: 10.1002/marc.201200329.
  • Nandy, K.; Srivastava, A.; Afgan, S.; Kumar, R.; Yadav, D. K.; Ganesan, V. Trithiocarbonate-Mediated RAFT Synthesis of a Block Copolymer: Silver Nanoparticles Integration and Sensitive Recognition of Hg2+. Polym. Bull. 2023, 80, 4061–4083. DOI: 10.1007/s00289-022-04239-6.
  • Jung, H.-R.; Lee, W.-J. Electrochemical Characteristics of Electrospun Poly (Methyl Methacrylate)/Polyvinyl Chloride as Gel Polymer Electrolytes for Lithium Ion Battery. Electrochim. Acta 2011, 58, 674–680. DOI: 10.1016/j.electacta.2011.10.015.
  • Rosiles-González, V.; Le Lagadec, R.; Varguez-Catzim, P.; Loria-Bastarrachea, M. I.; González-Díaz, A.; Hernández-Núñez, E.; Aguilar-Vega, M.; González-Díaz, M. O. Preparation and Characterization of Strongly Sulfonated Acid Block and Random Copolymer Membranes for Acetic Acid Esterification with 2-Propanol. Polymers (Basel) 2022, 14, 2595. DOI: 10.3390/polym14132595.
  • Xu, X.; Xiang, H.; Wang, Z.; Wu, C.; Lu, C. Doping Engineering and Functionalization of Iron Oxide Nanoclusters for Biomedical Applications. J. Alloys Comp. 2022, 923, 166459. DOI: 10.1016/j.jallcom.2022.166459.
  • Zhou, H.; Xiong, Y.-Z.; Wang, T.-F.; Zeng, J.-X.; Liu, H.; Jian, J.; Yuan, Z.-Q.; Zhou, Z.-H.; Zeng, L.-W.; Liu, G.-Q. Synthesis of Polyurethane Hydrogel and Polyurethane Thermoplastic Elastomer Composite Based Separation Membranes. J Nanosci Nanotechnol 2020, 20, 900–908. DOI: 10.1166/jnn.2020.16941.
  • Cha, J-m.; Park, S.-H.; Ryu, B.-K. Synthesis of Cu–SiO2 Core–Shell Using Ultrasonic Waves and Its Antibacterial Activity. Glass Phys. Chem. 2019, 45, 518–524. DOI: 10.1134/S1087659619060075.
  • Oladeji, A. V.; Courtney, J. M.; Rees, N. V. Copper Deposition on Metallic and Non-Metallic Single Particles via Impact Electrochemistry. Electrochim. Acta 2022, 405, 139838. DOI: 10.1016/j.electacta.2022.139838.
  • Han, Y.; Zheng, J.; Dong, S. A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on Ag–MnO2–MWCNTs Nanocomposites. Electrochim. Acta 2013, 90, 35–43. DOI: 10.1016/j.electacta.2012.11.117.
  • Gakiya-Teruya, M.; Palomino-Marcelo, L.; Rodriguez-Reyes, J. C. F. Synthesis of Highly Concentrated Suspensions of Silver Nanoparticles by Two Versions of the Chemical Reduction Method. Methods Protoc. 2018, 2, 3. DOI: 10.3390/mps2010003.
  • Mavaei, M.; Chahardoli, A.; Shokoohinia, Y.; Khoshroo, A.; Fattahi, A. One-Step Synthesized Silver Nanoparticles Using Isoimperatorin: Evaluation of Photocatalytic, and Electrochemical Activities. Sci. Rep. 2020, 10, 1–12. DOI: 10.1038/s41598-020-58697-x.
  • Kassaee, M.; Mohammadkhani, M.; Akhavan, A.; Mohammadi, R. In Situ Formation of Silver Nanoparticles in PMMA via Reduction of Silver Ions by Butylated Hydroxytoluene. Struct. Chem. 2011, 22, 11–15. DOI: 10.1007/s11224-010-9671-1.
  • Humud, H. R.; Kadhim, A.; Abd Al Kareem, L. Gas Flow Rate Effect on the Nonlinear Optical Properties of Ag/PMMA Nanocomposite Thin Films Prepared by Aerosol Assisted Dielectric Barrier Discharge Plasma Jet Polymerization. Int. J. Curr. Eng. Technol. 2015, 5.
  • Singho, N. D.; Johan, M. R.; Lah, N. A. C. Temperature-Dependent Properties of Silver-Poly (Methylmethacrylate) Nanocomposites Synthesized by in-Situ Technique. Nanoscale Res. Lett. 2014, 9, 1–6.
  • Rastogi, P. K.; Ganesan, V.; Krishnamoorthi, S. A Promising Electrochemical Sensing Platform Based on a Silver Nanoparticles Decorated Copolymer for Sensitive Nitrite Determination. J. Mat. Chem. A 2014, 2, 933–943. DOI: 10.1039/C3TA13794E.
  • Hoa, L. T.; Linh, N. T. Y.; Chung, J. S.; Hur, S. H. Green Synthesis of Silver Nanoparticle-Decorated Porous Reduced Graphene Oxide for Antibacterial Non-Enzymatic Glucose Sensors. Ionics 2017, 23, 1525–1532. DOI: 10.1007/s11581-016-1954-0.
  • Ghaemi-Amiri, F.; Aghaie, H.; Giahi, M.; Mozaffari, M. Electrocatalytic Oxidation Study of Theophylline on a Copper Nanoparticles-Modified, Carbon Paste Electrode Based on Cyclic Voltammetry. Iranian J. Chem. Chem. Eng. (IJCCE) 2020, 39, 99–112.
  • Chen, L.; Xie, H.; Li, J. Electrochemical Glucose Biosensor Based on Silver Nanoparticles/Multiwalled Carbon Nanotubes Modified Electrode. J. Solid State Electrochem. 2012, 16, 3323–3329. DOI: 10.1007/s10008-012-1773-9.
  • Deshmukh, M. A.; Kang, B.-C.; Ha, T.-J. Non-Enzymatic Electrochemical Glucose Sensors Based on Polyaniline/Reduced-Graphene-Oxide Nanocomposites Functionalized with Silver Nanoparticles. J. Mater. Chem. C 2020, 8, 5112–5123. DOI: 10.1039/C9TC06836H.
  • Singhal, A.; Anand, V. K.; Virdi, G. Graphene Oxide/Silver Nanocomposite Based Non-Enzymatic Glucose Sensor. J. Bionanosci. 2018, 12, 397–400. DOI: 10.1166/jbns.2018.1527.
  • Hui, N.; Wang, S.; Xie, H.; Xu, S.; Niu, S.; Luo, X. Nickel Nanoparticles Modified Conducting Polymer Composite of Reduced Graphene Oxide Doped Poly (3, 4-Ethylenedioxythiophene) for Enhanced Nonenzymatic Glucose Sensing. Sens. Actuat. B: Chem. 2015, 221, 606–613. DOI: 10.1016/j.snb.2015.07.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.