153
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Brief insights of various adsorbents utilized for the sequestration of toxic pollutants from aqueous phase: a review

&
Pages 1165-1195 | Received 16 Oct 2022, Accepted 07 Apr 2023, Published online: 27 Apr 2023

References

  • Ahmad, A.; Mohd-Setapar, S. H.; Chuong, C. S.; Khatoon, A.; Wani, W. A.; Kumar, R.; Rafatullah, M. Recent Advances in New Generation Dye Removal Technologies: novel Search for Approaches to Reprocess Wastewater. RSC Adv. 2015, 5, 30801–30818. DOI: 10.1039/C4RA16959J.
  • Okereke, J. N.; Ogidi, O. I.; Obasi, K. O. Environmental and Health Impact of Industrial Wastewater Effluents in Nigeria-A Review. Int. J. Adv. Res. Biol. Sci. 2016, 6, 55–67. DOI: http://s-o-i.org/1.15/ijarbs-2016-3-6-8.
  • Paithankar, J. G.; Saini, S.; Dwivedi, S.; Sharma, A.; Chowdhuri, D. K. Heavy Metal Associated Health Hazards: An Interplay of Oxidative Stress and Signal Transduction. Chemosphere 2021, 262, 128350. DOI: 10.1016/j.chemosphere.2020.128350.
  • Rehman, A. U.; Nazir, S.; Irshad, R.; Tahir, K.; Ur Rehman, K.; Islam, R. U.; Wahab, Z. Toxicity of Heavy Metals in Plants and Animals and Their Uptake by Magnetic Iron Oxide Nanoparticles. J. Mol. Liq. 2021, 321, 114455. DOI . DOI: 10.1016/j.molliq.2020.114455.
  • Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review. Environ. Sci. Technol. 2016, 50, 7290–7304. DOI: 10.1021/acs.est.6b01897.
  • Neoh, C. H.; Noor, Z. Z.; Mutamim, N. S.; Lim, C. K. Green Technology in Wastewater Treatment Technologies: integration of Membrane Bioreactor with Various Wastewater Treatment Systems. Eng. Technol. 2016, 283, 582–594. DOI: 10.1016/j.cej.2015.07.060.
  • Ambaye, T. G.; Vaccari, M.; van Hullebusch, E. D.; Amrane, A.; Rtimi, S. Mechanisms and Adsorption Capacities of Biochar for the Removal of Organic and Inorganic Pollutants from Industrial Wastewater. Int. J. Environ. Sci. Technol. 2021, 18, 3273–3294. DOI: 10.1007/s13762-020-03060-w.
  • Njaramba, L. K.; Kim, S.; Kim, Y.; Cha, B.; Kim, N.; Yoon, Y.; Park, C. M. Remarkable Adsorption for Hazardous Organic and Inorganic Contaminants by Multifunctional Amorphous Core–Shell Structures of Metal–Organic Framework-Alginate Composites. Chem. Eng. J. 2022, 431, 133415. DOI: 10.1016/j.cej.2021.133415.
  • Wilkinson, J.; Hooda, P. S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, Fate and Transformation of Emerging Contaminants in Water: An Overarching Review of the Field. Environ. Pollut. 2017, 231, 954–970. DOI: 10.1016/j.envpol.2017.08.032.
  • Richardson, S. D.; Kimura, S. Y. Emerging Environmental Contaminants: challenges Facing Our Next Generation and Potential Engineering Solutions. Environ. Technol. Innov. 2017, 8, 40–56. DOI: 10.1016/j.eti.2017.04.002.
  • Prosser, R. S.; Sibley, P. K. Human Health Risk Assessment of Pharmaceuticals and Personal Care Products in Plant Tissue Due to Biosolids and Manure Amendments, and Wastewater Irrigation. Environ. Int. 2015, 75, 223–233. DOI: 10.1016/j.envint.2014.11.020.
  • Cizmas, L.; Sharma, V. K.; Gray, C. M.; McDonald, T. J. Pharmaceuticals and Personal Care Products in Waters: occurrence, Toxicity, and Risk. Environ. Chem. Lett. 2015, 13, 381–394. DOI: 10.1007/s10311-015-0524-4.
  • Tang, Y.; Li, Y.; Zhan, L.; Wu, D.; Zhang, S.; Pang, R.; Xie, B. Removal of Emerging Contaminants (Bisphenol a and Antibiotics) from Kitchen Wastewater by Alkali-Modified Biochar. Sci. Total Environ. 2022, 805, 150158. DOI: 10.1016/j.scitotenv.2021.150158.
  • Harja, M.; Ciobanu, G. Studies on Adsorption of Oxytetracycline from Aqueous Solutions onto Hydroxyapatite. Sci. Total Environ. 2018, 628-629, 36–43. DOI: 10.1016/j.scitotenv.2018.02.027.
  • Khan, S. A.; Hussain, D.; Khan, T. A. Recent advances in synthetic dyes. Innovative and Emerging Technologies for Textile Dyeing and Finishing; 2021, pp. 91–111. DOI: 10.1002/9781119710288.
  • Kamaraj, M.; Srinivasan, N. R.; Assefa, G.; Adugna, A. T.; Kebede, M. Facile Development of Sunlit ZnO Nanoparticles-Activated Carbon Hybrid from Pernicious Weed as an Operative Nano-Adsorbent for Removal of Methylene Blue and Chromium from Aqueous Solution: extended Application in Tannery Industrial Wastewater. Environ. Technol. Innov. 2020, 17, 100540. DOI: 10.1016/j.eti.2019.100540.
  • Zhao, L.; Deng, J.; Sun, P.; Liu, J.; Ji, Y.; Nakada, N.; Qiao, Z.; Tanaka, H.; Yang, Y. Nanomaterials for Treating Emerging Contaminants in Water by Adsorption and Photocatalysis: Systematic Review and Bibliometric analysis. Sci. Total Environ. 2018, 627, 1253–1263. DOI: 10.1016/j.scitotenv.2018.02.006.
  • Girish, C. R. Simultaneous Adsorption of Pollutants onto the Adsorbent Review of Interaction Mechanism between the Pollutants and the Absorbent. Int. J. Eng. Technol. 2018, 7, 3613–3622. DOI: 10.14419/ijet.v7i4.19671.
  • Badawi, A. K.; Zaher, K. Hybrid Treatment System for Real Textile Wastewater Remediation Based on Coagulation/Flocculation, Adsorption and Filtration Processes: performance and Economic Evaluation. J. Water Process. Eng. 2021, 40, 101963. DOI: 10.1016/j.jwpe.2021.101963.
  • Reshmy, R.; Philip, E.; Madhavan, A.; Pugazhendhi, A.; Sindhu, R.; Sirohi, R.; Awasthi, M. K.; Pandey, A.; Binod, P. Nanocellulose as Green Material for Remediation of Hazardous Heavy Metal Contaminants. J. Hazard Mater. 2022, 424, 127516. DOI: 10.1016/j.jhazmat.2021.127516.
  • Bhardwaj, S.; Jan, S.; Sharma, D.; Kapoor, D.; Singh, R.; Bhardwaj, R. Heavy Metal Contamination in Plants Sources and Effects. Heavy Metals in Plants Physiological to Molecular Approach; CRC Press, 2022, pp. 50–63.
  • Sud, D.; Mahajan, G.; Kaur, M. P. Agricultural Waste Material as Potential Adsorbent for Sequestering Heavy Metal Ions from Aqueous Solutions–a Review. Bioresour. Technol. 2008, 99, 6017–6027. DOI: 10.1016/j.biortech.2007.11.064.
  • Farooq, U.; Kozinski, J. A.; Khan, M. A.; Athar, M. Biosorption of Heavy Metal Ions Using Wheat Based Biosorbents–A Review of the Recent Literature. Bioresour. Technol. 2010, 101, 5043–5053. DOI: 10.1016/j.biortech.2010.02.030.
  • Rathi, B. S.; Kumar, P. S.; Show, P. L. A Review on Effective Removal of Emerging Contaminants from Aquatic Systems: Current Trends and Scope for Further Research. J. Hazard Mater. 2021, 409, 124413. DOI: 10.1016/j.jhazmat.2020.124413.
  • Chinnaiyan, P.; Thampi, S. G.; Kumar, M.; Mini, K. Pharmaceutical Products as Emerging Contaminant in Water: relevance for Developing Nations and Identification of Critical Compounds for Indian Environment. Environ. Monit. Assess 2018, 190, 1–3. DOI: 10.1007/s10661-018-6672-9.
  • Snyder, S. A. Occurrence, Treatment, and Toxicological Relevance of EDCs and Pharmaceuticals in Water. Ozone: Sci. Eng. 2008, 30, 65–69. DOI: 10.1080/01919510701799278.
  • Behera, S. K.; Kim, H. W.; Oh, J. E.; Park, H. S. Occurrence and Removal of Antibiotics, Hormones and Several Other Pharmaceuticals in Wastewater Treatment Plants of the Largest Industrial City of Korea. Sci. Total Environ. 2011, 409, 4351–4360. DOI: 10.1016/j.scitotenv.2011.07.015.
  • Wang, J.; Wang, S. Removal of Pharmaceuticals and Personal Care Products (PPCPs) from Wastewater: A Review. J. Environ. Manage. 2016, 182, 620–640. DOI: 10.1016/j.jenvman.2016.07.049.
  • Kim, E.; Jung, C.; Han, J.; Her, N.; Park, C. M.; Jang, M.; Son, A.; Yoon, Y. Sorptive Removal of Selected Emerging Contaminants Using Biochar in Aqueous Solution. J. Ind. Eng. Chem. 2016, 36, 364–371. DOI: 10.1016/j.jiec.2016.03.004.
  • Gani, K. M.; Kazmi, A. A. Contamination of Emerging Contaminants in Indian Aquatic Sources: first Overview of the Situation. J. Hazard. Toxic Radioact. Waste 2017, 21, 4016026. DOI: 10.1061/(ASCE)HZ.2153-5515.0000348.
  • Mandaric, L.; Celic, M.; Marcé.; Petrovic, M. Introduction on Emerging Contaminants in Rivers and Their Environmental Risk. Emerging Contaminants in River Ecosystems: Occurrence and Effects under Multiple Stress Conditions, 2016, pp. 3–25. DOI: 10.1007/698_2015_5012.
  • González, S.; López-Roldán, R.; Cortina, J. L. Presence and Biological Effects of Emerging Contaminants in Llobregat River Basin: A Review. Environ. Pollut. 2012, 161, 1683–92. DOI: 10.1016/j.envpol.2011.10.002.
  • Zhang, Y.; Habteselassie, M. Y.; Resurreccion, E. P.; Mantripragada, V.; Peng, S.; Bauer, S.; Colosi, L. M. Evaluating Removal of Steroid Estrogens by a Model Alga as a Possible Sustainability Benefit of Hypothetical Integrated Algae Cultivation and Wastewater Treatment Systems. ACS Sustainable Chem. Eng. 2014, 2, 2544–2553. DOI: 10.1021/sc5004538.
  • Guo, H. Y.; Zhang, L.; Zhang, L. L.; Zhou, J. X. Optimal Placement of Sensors for Structural Health Monitoring Using Improved Genetic Algorithms. Smart Mater. Struct. 2004, 13, 528–534. DOI 101088/0964-1726/13/3/011 DOI: 10.1088/0964-1726/13/3/011.
  • Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C. U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. DOI: 10.1021/acs.chemrev.8b00299.
  • Aus der Beek, T.; Weber, F.-A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the EnvironmentGlobal Occurrences and Perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. DOI: 10.1002/etc.3339.
  • Ebele, A. J.; Abdallah, M. A.; Harrad, S. Pharmaceuticals and Personal Care Products (PPCPs) in the Freshwater Aquatic Environment. Emerg. Contam. 2017, 3, 1–16. DOI: 10.1016/j.emcon.2016.12.004.
  • Pereira, L. C.; de Souza, A. O.; Bernardes, M. F.; Pazin, M.; Tasso, M. J.; Pereira, P. H.; Dorta, D. J. A Perspective on the Potential Risks of Emerging Contaminants to Human and Environmental Health. Environ. Sci. Pollut. Res. Int. 2015, 22, 13800–13823. DOI: 10.1007/s11356-015-4896-6.
  • Khan, S. A.; Siddiqui, M. F.; Khan, T. A. Synthesis of Poly (Methacrylic Acid)/Montmorillonite Hydrogel Nanocomposite for Efficient Adsorption of Amoxicillin and Diclofenac from Aqueous Environment: Kinetic, Isotherm, Reusability, and Thermodynamic Investigations. ACS Omega 2020, 5, 2843–2855. DOI: 10.1021/acsomega.9b03617.
  • Khan, S. A.; Abbasi, N.; Hussain, D.; Khan, T. A. Sustainable Mitigation of Paracetamol with a Novel Dual-Functionalized Pullulan/Kaolin Hydrogel Nanocomposite from Simulated Wastewater. Langmuir 2022, 38, 8280–8295. DOI: 10.1021/acs.langmuir.2c00702.
  • Kumar, A.; Patra, C.; Kumar, S.; Narayanasamy, S. Effect of Magnetization on the Adsorptive Removal of an Emerging Contaminant Ciprofloxacin by Magnetic Acid Activated Carbon. Environ. Res. 2022, 206, 112604. DOI: 10.1016/j.envres.2021.112604.
  • V, V. P.; Kumar, N.; Rajendran, H. K.; Ray, J.; Narayanasamy, S. Sequestration and Toxicological Assessment of Emerging Contaminants with Polypyrrole Modified Carboxymethyl Cellulose (CMC/PPY): Case of Ibuprofen Pharmaceutical Drug. Int. J. Biol. Macromol. 2022, 221, 547–557. DOI: 10.1016/j.ijbiomac.2022.09.046.
  • Mengesha, D. N.; Abebe, M. W.; Appiah-Ntiamoah, R.; Kim, H. Ground Coffee Waste-Derived Carbon for Adsorptive Removal of Caffeine: Effect of Surface Chemistry and Porous Structure. Sci. Total Environ. 2022, 818, 151669. DOI: 10.1016/j.scitotenv.2021.151669.
  • Kashyap, K.; Verma, D. K.; Pattanayak, S. K.; Khan, F. Green Synthesized Cerium Oxide Nanoparticles as Efficient Adsorbent for Removal of Fluoride Ion from Aqueous Solution. Water Air Soil Pollut. 2023, 234, 179. DOI: 10.1007/s11270-023-06191-1.
  • Benjedim, S.; Romero-Cano, L. A.; Pérez-Cadenas, A. F.; Bautista-Toledo, M. I.; Lotfi, E. M.; Carrasco-Marín, F. Removal of Emerging Pollutants Present in Water Using an E-Coli Biofilm Supported onto Activated Carbons Prepared from Argan Wastes: Adsorption Studies in Batch and Fixed Bed. Sci. Total Environ. 2020, 720, 137491. DOI: 10.1016/j.scitotenv.2020.137491.
  • Dolfini, N.; Araujo, C.; Pereira, N. C. Amoxicillin Removal from Water by Adsorption on Activated Carbon of Mineral Sources: discussion of Experimental Data, Mechanisms and Modeling. Environ. Technol. 2022, 23, 1–15. DOI: 10.1080/09593330.2022.2148571.
  • Belaissa, Y.; Saib, F.; Trari, M. Removal of Amoxicillin in Aqueous Solutions by a Chemical Activated Carbons Derived from Jujube Nuts: adsorption Behaviors, Kinetic and Thermodynamic Studies. React. Kinet. Mech. Cat. 2022, 135, 1011–1030. DOI: 10.1007/s11144-022-02159-0.
  • Xiong, S.; Wu, Z.; Li, Z. Facile Fabrication of Robust, Versatile, and Recyclable Biochar-Graphene Oxide Composite Monoliths for Efficient Removal of Different Contaminants in Water. Chemosphere 2022, 287, 132418. DOI: 10.1016/j.chemosphere.2021.132418.
  • Minaei, S.; Benis, K. Z.; McPhedran, K. N.; Soltan, J. Evaluation of a ZnCl2-Modified Biochar Derived from Activated Sludge Biomass for Adsorption of Sulfamethoxazole. Chem. Eng. Res. Des. 2023, 190, 407–420. DOI: 10.1016/j.cherd.2022.12.038.
  • Chenthamara, D.; Ramakrishnan, S. G.; Robert, B.; Murugan, P.; Subramaniam, S. Zinc Chloride Activated Carbon from Pleurotus floridanus Biomass for Piroxicam Adsorption. J. Chem. Tech. Biotech. 2022, 97, 719–730. DOI: 10.1002/jctb.6957.
  • Laabd, M.; Brahmi, Y.; El Ibrahimi, B.; Hsini, A.; Toufik, E.; Abdellaoui, Y.; Abou Oualid, H.; El Ouardi, M.; Albourine, A. A Novel Mesoporous Hydroxyapatite@ Montmorillonite Hybrid Composite for High-Performance Removal of Emerging Ciprofloxacin Antibiotic from Water: Integrated Experimental and Monte Carlo Computational Assessment. J. Mol. Liq. 2021, 338, 116705. DOI: 10.1016/j.molliq.2021.116705.
  • Kamboh, M. A.; Arain, S. S.; Jatoi, A. H.; Sherino, B.; Algarni, T. S.; Al-Onazi, W. A.; Al-Mohaimeed, A. M.; Rezania, S. Green Sporopollenin Supported Cyanocalixarene Based Magnetic Adsorbent for Pesticides Removal from Water: Kinetic and Equilibrium Studies. Environ. Res. 2021, 201, 111588. DOI: 10.1016/j.envres.2021.111588.
  • Vegas-Mendoza, S. M.; Gutierrez-Ortega, J. A.; Moran-Salazar, R. G.; Cortes-Llamas, S. A.; Carbajal-Arizaga, G. G.; Peregrina-Lucano, A. A.; Shenderovich, I. G.; Torres-Santiago, G.; Gómez-Salazar, S. L-Glutathione-Functionalized Silica Adsorbent for the Removal of Pesticide Malathion from Aqueous Solutions. Processes 2022, 10, 2146. DOI: 10.3390/pr10102146.
  • Chauhan, M.; Saini, V. K.; Suthar, S. Removal of Pharmaceuticals and Personal Care Products (PPCPs) from Water by Adsorption on Aluminum Pillared Clay. J. Porous Mater. 2020, 27, 383–393. DOI: 10.1007/s10934-019-00817-8.
  • Feng, Z.; Zhai, X.; Sun, T. Sustainable and Efficient Removal of Paraben, Oxytetracycline and Metronidazole Using Magnetic Porous Biochar Composite Prepared by One Step Pyrolysis. Sep. Purif. Technol. 2022, 293, 121120. DOI: 10.1016/j.seppur.2022.121120.
  • Abdel-Aziz, H. M.; Farag, R. S.; Abdel-Gawad, S. A. Removal of Caffeine from Aqueous Solution by Green Approach Using Ficus benjamina Zero-Valent Iron/Copper Nanoparticles. Adsorpt. Sci. Technol. 2020, 38, 325–343. DOI: 10.1177/0263617420947495.
  • Wang, T.; Zhang, H.; Liu, Y.; Zhang, L.; Xing, B. Ultrathin Porous Carbon Nanosheet as an Efficient Adsorbent for the Removal of Bisphenol A: The Overlooked Role of Topological Defects. Chemosphere 2022, 306, 135549. DOI: 10.1016/j.chemosphere.2022.135549.
  • Agub, M. T.; Sen, T. K.; Afroze, S.; Ang, H. M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. DOI: 10.1016/j.cis.2014.04.002.
  • Khan, S. A.; Khan, T. A. Clay-Hydrogel Nanocomposites for Adsorptive Amputation of Environmental Contaminants from Aqueous Phase: A Review. J. Environ. Chem. Eng. 2021, 9, 105575. DOI: 10.1016/j.jece.2021.105575.
  • Hadi, P.; Xu, M.; Ning, C.; Lin, C. S. K.; McKay, G. A Critical Review on Preparation, Characterization, and Utilization of Sludge-Derived Activated Carbons for Wastewater Treatment. Chem. Eng. Technol. 2015, 260, 895–906. DOI: 10.1016/j.cej.2014.08.088.
  • Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X.; Chu, H. Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal: A Review. J. Anal. Appl. Pyrolysis 2021, 155, 105081. DOI: 10.1016/j.jaap.2021.105081.
  • Vakili, M.; Rafatullah, M.; Salamatinia, B.; Abdullah, A. Z.; Ibrahim, M. H.; Tan, K. B.; Gholami, Z.; Amouzgar, P. Application of Chitosan and Its Derivatives as Adsorbents for Dye Removal from Water and Wastewater: A Review. Carbohydr. Polym. 2014, 113, 115–130. DOI: 10.1016/j.carbpol.2014.07.007.
  • Uddin, K. A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus on the past Decade. Chem. Eng. Technol. 2017, 308, 438–462. DOI: 10.1016/j.cej.2016.09.029.
  • Hao, J.; Wang, Z.; White, J. C.; Xing, B. Graphene in the Aquatic Environment: adsorption, Dispersion, Toxicity, and Transformation. Environ. Sci. Technol. 2014, 48, 9995–10009. DOI. DOI: 10.1021/es5022679.
  • Abbas, A.; Al-Amer, A. M.; Laoui, T.; Al-Marri, M. J.; Nasser, M. S.; Khraisheh, M.; Atieh.; M. A.; Ihsanullah. Heavy Metal Removal from Aqueous Solution by Advanced Carbon Nanotubes: critical Review of Adsorption Applications. Sep. Purif. Technol. 2016, 157, 141–161. DOI: 10.1016/j.seppur.2015.11.039.
  • Phillips, B.; Wang, C.; Tu, X.; Chang, C. H.; Banerjee, S.; Al-Hashimi, M.; Hu, W.; Fang, L. Cyclodextrin-Derived Polymer Networks for Selective Molecular Adsorption. Chem. Commun. (Camb) 2020, 56, 11783–11786. DOI: 10.1039/d0cc04784h.
  • Tang, H.; Wang, J.; Zhang, S.; Pang, H.; Wang, X.; Chen, Z.; Li, M.; Song, G.; Qiu, M.; Yu, S, 2021 Recent Advances in Nanoscale Zero-Valent Iron-Based Materials: Characteristics, Environmental Remediation and Challenges. J. Clean. Prod. 2021, 319, 128641. DOI: 10.1016/j.jclepro.2021.128641.
  • Weidner, E.; Ciesielczyk, F. Removal of Hazardous Oxyanions from the Environment Using Metal-Oxide-Based Materials. Materials 2019, 12, 927. DOI: 10.3390/ma12060927.
  • Hasan, Z.; Jhung, S. H. Removal of Hazardous Organics from Water Using Metal-Organic Frameworks (MOFs): Plausible Mechanisms for Selective Adsorptions. J. Hazard Mater. 2015, 283, 329–339. DOI: 10.1016/j.jhazmat.2014.09.046.
  • Liu, L.; Gao, Z. Y.; Su, X. P.; Chen, X.; Jiang, L.; Yao, J. M. Adsorption Removal of Dyes from Single and Binary Solutions Using a Cellulose-Based Bioadsorbent. ACS Sustainable Chem. Eng. 2015, 3, 432–442. DOI: 10.1021/sc500848m.
  • Tony, M. A. Low-Cost Adsorbents for Environmental Pollution Control: A Concise Systematic Review from the Prospective of Principles, Mechanism and Their Applications. J. Dispers. Sci. Technol. 2021, 43, 1–23. DOI: 10.1080/01932691.2021.1878037.
  • Rashid, R.; Shafiq, I.; Akhter, P.; Iqbal, M. J.; Hussain, M. A State-of-the-Art Review on Wastewater Treatment Techniques: The Effectiveness of Adsorption Method. Environ. Sci. Pollut. Res. Int. 2021, 28, 9050–9066. DOI: 10.1007/s11356-021-12395-x.
  • Vijayaraghavan, K.; Yun, Y. S. Bacterial Biosorbents and Biosorption. Biotechnol. Adv. 2008, 26, 266–291. DOI: 10.1016/j.biotechadv.2008.02.002.
  • Tadkaew, N.; Hai, F. I.; McDonald, J. A.; Khan, S. J.; Nghiem, L. D. Removal of Trace Organics by MBR Treatment: The Role of Molecular Properties. Water Res. 2011, 45, 2439–2451. DOI: 10.1016/j.watres.2011.01.023.
  • Adewuyi, A.; Pereira, F. V. Underutilized Luffa Cylindrica Sponge: A Local Bio-Adsorbent for the Removal of Pb (II) Pollutant from Water System. J. Basic Appl. 2017, 6, 118–126. DOI: 10.1016/j.bjbas.2017.02.001.
  • Ramachandran, V.; Pujari, N.; Matey, T.; Kulkarni, S.; Rice, A. Enzymatic Hydrolysis for glucose-A Review. IJSETR 2013, 2, 937–1942.
  • Ahmed, M. J.; Hameed, B. H. Insight into the co-Pyrolysis of Different Blended Feedstocks to Biochar for the Adsorption of Organic and Inorganic Pollutants: A Review. J. Clean. Prod. 2020, 265, 121762. DOI: 10.1016/j.jclepro.2020.121762.
  • Rajapaksha, A. U.; Vithanage, M.; Ahmad, M.; Seo, D. C.; Cho, J. S.; Lee, S. E.; Lee, S. S.; Ok, Y. S. Enhanced Sulfamethazine Removal by Steam-Activated Invasive Plant-Derived Biocha. J. Hazard Mater. 2015, 290, 43–50. DOI: 10.1016/j.jhazmat.2015.02.046.
  • ] Ngah, W. W.; Hanafiah, M. M. Removal of Heavy Metal Ions from Wastewater by Chemically Modified Plant Wastes as Adsorbents: A Review. Bioresour. Technol. 2008, 99, 3935–3948. DOI: 10.1016/j.biortech.2007.06.011.
  • Valili, S.; Siavalas, G.; Karapanagioti, H. K.; Manariotis, I. D.; Christanis, K. Phenanthrene Removal from Aqueous Solutions Using Well-Characterized, Raw, Chemically Treated, and Charred Malt Spent Rootlets, a Food Industry by-Product. J. Environ. Manage. 2013, 128, 252–258. DOI: 10.1016/j.jenvman.2013.04.057.
  • Xi, J.; He, M.; Lin, C. Adsorption of Antimony (III) and Antimony (V) on Bentonite: kinetics, Thermodynamics, and Anion Competition. Microchem. J. 2011, 97, 85–91. DOI: 10.1016/j.microc.2010.05.017.
  • Visa, M. Tailoring Fly Ash Activated with Bentonite as Adsorbent for Complex Wastewater Treatment. Appl. Surf. Sci. 2012, 263, 753–762. DOI: 10.1016/j.apsusc.2012.09.156.
  • Feddal, I.; Ramdani, A.; Taleb, S.; Gaigneaux, E. M.; Batis, N.; Ghaffour, N, Adsorption Capacity of Methylene Blue, an Organic Pollutant, by Montmorillonite Clay. Desalin. Water Treat. 2014, 52, 2654–2661. DOI: 10.1080/19443994.2013.865566.
  • Nourmoradi, H.; Avazpour, M.; Ghasemian, N.; Heidari, M.; Moradnejadi, K.; Khodarahmi, F.; Javaheri, M.; Moghadam, F. M. Surfactant Modified Montmorillonite as a Low Cost Adsorbent for 4-Chlorophenol: Equilibrium, Kinetic and Thermodynamic Study. J. Taiwan Inst. Chem. Eng. 2016, 59, 244–251. DOI: 10.1016/j.jtice.2015.07.030.
  • Hailu, S. L.; Nair, B. U.; Redi-Abshiro, M.; Diaz, I.; Tessema, M. Preparation and Characterization of Cationic Surfactant Modified Zeolite Adsorbent Material for Adsorption of Organic and Inorganic Industrial Pollutants. J. Environ. Chem. Eng. 2017, 5, 3319–3329. DOI: 10.1016/j.jece.2017.06.039.
  • Wang, M.; Xie, R.; Chen, Y.; Pu, X.; Jiang, W.; Yao, L. A Novel Mesoporous Zeolite-Activated Carbon Composite as an Effective Adsorbent for Removal of Ammonia-Nitrogen and Methylene Blue from Aqueous Solution. Bioresour. Technol. 2018, 268, 726–732. DOI: 10.1016/j.biortech.2018.08.037.
  • Madan, S.; Shaw, R.; Tiwari, S.; Tiwari, S. K. Adsorption Dynamics of Congo Red Dye Removal Using ZnO Functionalized High Silica Zeolitic Particles. Appl. Surf. Sci. 2019, 487, 907–917. DOI: 10.1016/j.apsusc.2019.04.273.
  • Dotto, G. L.; Pinto, L. D. A. Adsorption of Food Dyes onto Chitosan: Optimization Process and Kinetic. Carbohydr. Polym. 2011, 84, 231–238. DOI: 10.1016/j.carbpol.2010.11.028.
  • Rêgo, T. V.; Cadaval, T. R. S.; Jr, Dotto, G. L.; Pinto, L. A. A. Statistical Optimization, Interaction Analysis and Desorption Studies for the Azo Dyes Adsorption onto Chitosan Films. J. Colloid Interface Sci. 2013, 411, 27–33. DOI: 10.1016/j.jcis.2013.08.051.
  • He, J.; Lu, Y.; Luo, G. Ca (II) Imprinted Chitosan Microspheres: An Effective and Green Adsorbent for the Removal of Cu (II), Cd (II) and Pb (II). From Aqueous Solutions. Chem. Eng. J. 2014, 244, 202–208. DOI: 10.1016/j.cej.2014.01.096.
  • Çınar, S.; Kaynar, Ü. H.; Aydemir, T.; Kaynar, S. C.; Ayvacıklı, M. An Efficient Removal of RB5 from Aqueous Solution by Adsorption onto nano-ZnO/Chitosan Composite Beads. Int. J. Biol. Macromol. 2017, 96, 459–465. DOI: 10.1016/j.ijbiomac.2016.12.021.
  • Rathinam, K.; Singh, S. P.; Arnusch, C. J.; Kasher, R. An Environmentally Friendly Chitosan-Lysozyme Biocomposite for the Effective Removal of Dyes and Heavy Metals from Aqueous Solutions. Carbohydr. Polym. 2018, 199, 506–515. DOI: 10.1016/j.carbpol.2018.07.055.
  • Parshi, N.; Pan, D.; Dhavle, V.; Jana, B.; Maity, S.; Ganguly, J. Fabrication of Lightweight and Reusable Salicylaldehyde Functionalized Chitosan as Adsorbent for Dye Removal and Its Mechanism. Int. J. Biol. Macromol. 2019, 141, 626–635. DOI: 10.1016/j.ijbiomac.2019.09.025.
  • Noreen, S.; Bhatti, H. N.; Iqbal, M.; Hussain, F.; Sarim, F. M. Chitosan, Starch, Polyaniline and Polypyrrole Biocomposite with Sugarcane Bagasse for the Efficient Removal of Acid Black Dye. Int. J. Biol. Macromol. 2020, 147, 439–452. DOI: 10.1016/j.ijbiomac.2019.12.257.
  • Bée, A.; Talbot, D.; Abramson, S.; Dupuis, V. Magnetic Alginate Beads for Pb (II) Ions Removal from Wastewater. J. Colloid Interface Sci. 2011, 362, 486–492. DOI: 10.1016/j.jcis.2011.06.036.
  • Mahmoodi, N. M. Magnetic Ferrite Nanoparticle–Alginate Composite: Synthesis, Characterization and Binary System Dye Removal. J. Taiwan Inst. Chem. Eng. 2013, 44, 322–330. DOI: 10.1016/j.jtice.2012.11.014.
  • Abas, S. N. A.; Ismail, M. H. S.; Siajam, S. I.; Kamal, M. L. Development of Novel Adsorbent-Mangrove-Alginate Composite Bead (MACB) for Removal of Pb (II) from Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2015, 50, 182–189. DOI: 10.1016/j.jtice.2014.11.013.
  • Mousa, N. E.; Simonescu, C. M.; Pătescu, R. E.; Onose, C.; Tardei, C.; Culiţă, D. C.; Oprea, O.; Patroi, D.; Lavric, V. Pb2+ Removal from Aqueous Synthetic Solutions by Calcium Alginate and Chitosan Coated Calcium Alginate. React. Funct. Polym. 2016, 109, 137–150. DOI: 10.1016/j.reactfunctpolym.2016.11.001.
  • Sigdel, A.; Jung, W.; Min, B.; Lee, M.; Choi, U.; Timmes, T.; Kim, S. J.; Kang, C. U.; Kumar, R.; Jeon, B. H. Concurrent Removal of Cadmium and Benzene from Aqueous Solution by Powdered Activated Carbon Impregnated Alginate Beads. Catena 2017, 148, 101–107. DOI: 10.1016/j.catena.2016.06.029.
  • Wang, Y.; Feng, Y.; Zhang, X. F.; Zhang, X.; Jiang, J.; Yao, J. Alginate-Based Attapulgite Foams as Efficient and Recyclable Adsorbents for the Removal of Heavy Metals. J. Colloid Interface Sci. 2018, 514, 190–198. DOI: 10.1016/j.jcis.2017.12.035.
  • Zeng, M.; Wu, W.; Fang, J.; Li, S.; Zhou, Z. Fabrication of Chitosan/Alginate Porous Sponges as Adsorbents for the Removal of Acid Dyes from Aqueous Solution. J. Mater. Sci. 2019, 54, 9995–10008. DOI: 10.1007/s10853-019-03602-9.
  • Javanbakht, V.; Shafiei, R. Preparation and Performance of Alginate/Basil Seed Mucilage Biocomposite for Removal of Eriochrome Black T Dye from Aqueous Solution. Int. J. Biol. Macromol. 2020, 152, 990–1001. DOI: 10.1016/j.ijbiomac.2019.10.185.
  • Li, B.; Chen, C. Novel Magnetic Gel Composite Based on Sodium Alginate Crosslinked by Yttrium (III) as Biosorbent for Efficient Removal of Direct Dyes from Aqueous Solution. J. Dispers. Sci. Technol. 2021, 43, 1–14. DOI: 10.1080/01932691.2021.1924190.
  • Abdulfatai, J.; Saka, A. A.; Afolabi, A. S.; Micheal, O. Development of Adsorbent from Banana Peel for Wastewater Treatment. AMM 2012, 248, 310–315. DOI: 10.4028/www.scientific.net/AMM.248.310.
  • Jalali, M.; Aboulghazi, F. Sunflower Stalk, an Agricultural Waste, as an Adsorbent for the Removal of Lead and Cadmium from Aqueous Solutions. J. Mater. Cycles Waste Manag. 2013, 15, 548–555. DOI: 10.1007/s10163-012-0096-3.
  • Johari, K.; Saman, N.; Song, S. T.; Chin, C. S.; Kong, H.; Mat, H. Adsorption Enhancement of Elemental Mercury by Various Surface Modified Coconut Husk as Eco-Friendly Low-Cost Adsorbents. Int. Biodeterior. 2016, 109, 45–52. DOI: 10.1016/j.ibiod.2016.01.004.
  • Reddy, M. S.; Sivaramakrishna, L.; Reddy, A. V. The Use of an Agricultural Waste Material, Jujuba Seeds for the Removal of Anionic Dye (Congo Red) from Aqueous Medium. J. Hazard Mater. 2012, 203-204, 118–127. DOI: 10.1016/j.jhazmat.2011.11.083.
  • Bayram, O.; Köksal, E.; Moral, E.; Göde, F.; Pehlivan, E. Efficient Decolorization of Cationic Dye (Malachite Green) by Natural-Based Biosorbent (Nano-Magnetic Sophora japonica Fruit Seed Biochar). J. Dispers. Sci. Technol. 2022, 1–12. DOI: 10.1080/01932691.2022.2135522.
  • Saravanan, R.; Ravikumar, L. Cellulose Bearing Schiff Base and Carboxylic Acid Chelating Groups: A Low Cost and Green Adsorbent for Heavy Metal Ion Removal from Aqueous Solution. Water Sci. Technol. 2016, 74, 1780–1792. DOI: 10.2166/wst.2016.296.
  • Yu, H. Y.; Zhang, D. Z.; Lu, F. F.; Yao, J. New Approach for Single-Step Extraction of Carboxylated Cellulose Nanocrystals for Their Use as Adsorbents and Flocculants. ACS Sustain. Chem. Eng. 2016, 4, 2632–2643. DOI: 10.1021/acssuschemeng.6b00126.
  • Cui, J.; Li, X.; Ma, S.; Wei, W. Cellulose Bridged Carbonate Hydroxyapatite Nanoparticles as Novel Adsorbents for Efficient Cr (VI) Removal. J. Dispers. Sci. Technol. 2022, 1–12. DOI: 10.1080/01932691.2022.2122496.
  • Yousif, A.; El-Afandy, A.; Dabbour, G.; Mubark, A. E. Selective Separation of V (IV) from Its Solutions Using Modified Cellulose. J. Dispers. Sci. Technol. 2022, 43, 1427–1437. DOI: 10.1080/01932691.2020.1844018.
  • Siswoyo, E.; Endo, N.; Mihara, Y.; Tanaka, S. Agar-Encapsulated Adsorbent Based on Leaf of Platanus sp. to Adsorb Cadmium Ion in Water. Water Sci. Technol. 2014, 70, 89–94. DOI: 10.2166/wst.2014.190.
  • Zhang, Q.; Dan, S.; Du, K. Fabrication and Characterization of Magnetic Hydroxyapatite Entrapped Agarose Composite Beads with High Adsorption Capacity for Heavy Metal Removal. Ind. Eng. Chem. Res. 2017, 56, 8705–8712. DOI: 10.1021/acs.iecr.7b01635.
  • Hegazi, H. A. Removal of Heavy Metals from Wastewater Using Agricultural and Industrial Wastes as Adsorbents. HBRC J. 2013, 9, 276–282. DOI: 10.1016/j.hbrcj.2013.08.004.
  • Chand, P.; Shil, A. K.; Sharma, M.; Pakade, Y. B. Improved Adsorption of Cadmium Ions from Aqueous Solution Using Chemically Modified Apple Pomace: Mechanism, Kinetics, and Thermodynamics. Int. Biodeterior. Biodegrad. 2014, 90, 8–16. DOI: 10.1016/j.ibiod.2013.10.028.
  • Bohli, T.; Ouederni, A.; Fiol, N.; Villaescusa, I. Evaluation of an Activated Carbon from Olive Stones Used as an Adsorbent for Heavy Metal Removal from Aqueous Phases. CR Chim. 2015, 18, 88–99. DOI: 10.1016/j.crci.2014.05.009.
  • Kazak, O.; Eker, Y. R.; Akin, I.; Bingol, H.; Tor, A. A Novel Red Mud@ Sucrose Based Carbon Composite: Preparation, Characterization and Its Adsorption Performance toward Methylene Blue in Aqueous Solution. J. Environ. Chem. Eng. 2017, 5, 2639–2647. DOI: 10.1016/j.jece.2017.05.018.
  • Zhou, L.; Zhou, H.; Hu, Y.; Yan, S.; Yang, J, 2019 Adsorption Removal of Cationic Dyes from Aqueous Solutions Using Ceramic Adsorbents Prepared from Industrial Waste Coal Gangue. J. Environ. Manage. 2019, 234, 245–252. DOI: 10.1016/j.jenvman.2019.01.009.
  • Ge, F.; Ye, H.; Li, M. M.; Zhao, B. X. Efficient Removal of Cationic Dyes from Aqueous Solution by Polymer-Modified Magnetic Nanoparticles. Chem. Eng. Technol. 2012, 198-199, 11–17. DOI: 10.1016/j.cej.2012.05.074.
  • Liu, J.; Ma, S.; Zang, L. Preparation and Characterization of Ammonium-Functionalized Silica Nanoparticle as a New Adsorbent to Remove Methyl Orange from Aqueous Solution. Appl. Surf. Sci. 2013, 265, 393–398. DOI: 10.1016/j.apsusc.2012.11.019.
  • Samadi, N.; Hasanzadeh, R.; Rasad, M. Adsorption Isotherms, Kinetic, and Desorption Studies on Removal of Toxic Metal Ions from Aqueous Solutions by Polymeric Adsorbent. J. Appl. Polym. Sci. 2014, 132, 41642. DOI: 10.1002/app.41642.
  • Wei, W.; Wang, Q.; Li, A.; Yang, J.; Ma, F.; Pi, S.; Wu, D. Biosorption of Pb (II) from Aqueous Solution by Extracellular Polymeric Substances Extracted from Klebsiella sp. J1: Adsorption Behavior and Mechanism Assessment. Sci. Rep. 2016, 6, 1–10. DOI: 10.1038/srep31575.
  • Ali, A. Removal of Mn (II) from Water Using Chemically Modified Banana Peels as Efficient Adsorbent. Environ. Nanotechnol. Monit. Manag 2017, 7, 57–63. DOI: 10.1016/j.enmm.2016.12.004.
  • Mohamed, R. R.; Abu Elella, M. H.; Sabaa, M. W.; Saad, G. R. Synthesis of an Efficient Adsorbent Hydrogel Based on Biodegradable Polymers for Removing Crystal Violet Dye from Aqueous Solution. Cellulose 2018, 25, 6513–6529. DOI: 10.1007/s10570-018-2014-x.
  • Ahamad, T.; Naushad, M.; Eldesoky, G. E.; Alqadami, A. A.; Khan, A. Synthesis and Characterization of Egg-Albumen-Formaldehyde Based Magnetic Polymeric Resin (MPR): Highly Efficient Adsorbent for Cd (II) Ion Removal from Aqueous Medium. J. Mol. Liq. 2019, 286, 110951. DOI: 10.1016/j.molliq.2019.110951.
  • Munjur, H. M.; Hasan, M. N.; Awual, M. R.; Islam, M. M.; Shenashen, M. A.; Iqbal, J. Biodegradable Natural Carbohydrate Polymeric Sustainable Adsorbents for Efficient Toxic Dye Removal from Wastewater. J. Mol. Liq. 2020, 319, 114356. DOI: 10.1016/j.molliq.2020.114356.
  • Hashim, D. P.; Narayanan, N. T.; Romo-Herrera, J. M.; Cullen, D. A.; Hahm, M. G.; Lezzi, P.; Suttle, J. R.; Kelkhoff, D.; Muñoz-Sandoval, E.; Ganguli, S.; et al. Covalently Bonded Three-Dimensional Carbon Nanotube Solids via Boron Induced Nanojunctions. Sci. Rep. 2012, 2, 1–8. DOI: 10.1038/srep00363.
  • Kim, E. S.; Hwang, G.; El-Din, M. G.; Liu, Y. Development of Nanosilver and Multi-Walled Carbon Nanotubes Thin-Film Nanocomposite Membrane for Enhanced Water Treatment. J. Membr. Sci. 2012, 394-395, 37–48. DOI: 10.1016/j.memsci.2011.11.041.
  • Ranjithkumar, V.; Sangeetha, S.; Vairam, S. Synthesis of Magnetic Activated Carbon/α-Fe2O3 Nanocomposite and Its Application in the Removal of Acid Yellow 17 Dye from Water. J. Hazard Mater. 2014, 273, 127–135. DOI: 10.1016/j.jhazmat.2014.03.034.
  • Yakout, A. A.; El-Sokkary, R. H.; Shreadah, M. A.; Hamid, O. G. A. Removal of Cd (II) and Pb (II) from Wastewater by Using Triethylenetetramine Functionalized Grafted Cellulose Acetate-Manganese Dioxide Composite. Carbohydr. Polym. 2016, 148, 406–414. DOI: 10.1016/j.carbpol.2016.04.038.
  • Chen, L.; Ji, T.; Mu, L.; Shi, Y.; Brisbin, L.; Guo, Z.; Khan, M. A.; Young, D. P.; Zhu, J. Facile Synthesis of Mesoporous Carbon Nanocomposites from Natural Biomass for Efficient Dye Adsorption and Selective Heavy Metal Removal. RSC Adv. 2016, 6, 2259–2269. DOI . DOI: 10.1039/C5RA19616G.
  • Mahmoudian, M.; Balkanloo, P. G.; Nozad, E. A Facile Method for Dye and Heavy Metal Elimination by pH Sensitive Acid Activated Montmorillonite/Polyethersulfone Nanocomposite Membrane. Chin. J. Polym. Sci. 2018, 36, 49–57. (English Edition). DOI: 10.1007/s10118-018-2004-3.
  • Saberi, A.; Alipour, E.; Sadeghi, M. Superabsorbent Magnetic Fe3O4-Based Starch-Poly (Acrylic Acid) Nanocomposite Hydrogel for Efficient Removal of Dyes and Heavy Metal Ions from Water. J. Polym. Res. 2019, 2, 1–14. DOI: 10.1007/s10965-019-1917-z.
  • Mahmoodi, N. M.; Taghizadeh, M.; Taghizadeh, A.; Abdi, J.; Hayati, B.; Shekarchi, A. A. Bio-Based Magnetic Metal-Organic Framework Nanocomposite: Ultrasound-Assisted Synthesis and Pollutant (Heavy Metal and Dye) Removal from Aqueous Media. Appl. Surf. Sci. 2019, 480, 288–299. DOI: 10.1016/j.apsusc.2019.02.21.
  • Mishra, S.; Singh, A. K.; Singh, J. K. Ferrous Sulfide and Carboxyl-Functionalized Ferroferric Oxide Incorporated PVDF-Based Nanocomposite Membranes for Simultaneous Removal of Highly Toxic Heavy-Metal Ions from Industrial Ground Water. J. Membr. Sci. 2020, 593, 117422. DOI: 10.1016/j.memsci.2019.117422.
  • Das, P.; Nisa, S.; Debnath, A.; Saha, B. Enhanced Adsorptive Removal of Toxic Anionic Dye by Novel Magnetic Polymeric Nanocomposite: Optimization of Process Parameters. J. Dispers. Sci. Technol. 2022, 43, 880–895. DOI: 10.1080/01932691.2020.1845958.
  • Elmoubarki, R.; Mahjoubi, F. Z.; Tounsadi, H.; Moustadraf, J.; Abdennouri, M.; Zouhri, A.; El Albani, A.; Barka, N. Adsorption of Textile Dyes on Raw and Decanted Moroccan Clays: Kinetics, Equilibrium, and Thermodynamics. Water Resour. Ind. 2015, 9, 16–29. DOI: 10.1016/j.wri.2014.11.001.
  • Kumari, N.; Mohan, C. Basics of Clay Minerals and Their Characteristic Properties. Clay Clay Miner. 2021, 24, 1–29.
  • Bhattacharyya, K. G.; Gupta, S. S. Adsorption of a Few Heavy Metals on Natural and Modified Kaolinite and Montmorillonite: A Review. Adv. Colloid Interface Sci. 2008, 140, 114–131. DOI: 10.1016/j.cis.2007.12.008.
  • Adeyemo, A. A.; Adeoye, I. O.; Bello, O. S. Adsorption of Dyes Using Different Types of Clay: A Review. Appl. Water Sci. 2017, 7, 543–568. DOI: 10.1007/s13201-015-0322-y.
  • Shamsudin, M. S.; Azha, S. F.; Ismail, S. A Review of Diclofenac Occurrences, Toxicology, and Potential Adsorption of Clay-Based Materials with Surfactant Modifier. J. Environ. Chem. Eng. 2022, 10, 107541. DOI: 10.1016/j.jece.2022.107541.
  • Cao, L.; Xie, W.; Cui, H.; Xiong, Z.; Tang, Y.; Zhang, X.; Feng, Y. Fibrous Clays in Dermopharmaceutical and Cosmetic Applications: Traditional and Emerging Perspectives. Int. J. Pharm. 2022, 625, 122097. DOI: 10.1016/j.ijpharm.2022.122097.
  • Espantaleon, A. G.; Nieto, J. A.; Fernandez, M.; Marsal, A. Use of Activated Clays in the Removal of Dyes and Surfactants from Tannery Wastewater. Appl. Clay Sci. 2003, 24, 105–110. DOI: 10.1016/S0169-1317(03)00153-4.
  • Özacar, M.; Şengil, İA. A Two-Stage Batch Adsorber Design for Methylene Blue Removal to Minimize Contact Time. J. Environ. Manage 2006, 80, 372–379. DOI: 10.1016/j.jenvman.2005.10.004.
  • Choi, H. J.; Yu, S. W.; Kim, K. H. Efficient Use of Mg-Modified Zeolite in the Treatment of Aqueous Solution Contaminated with Heavy Metal Toxic Ions. J. Taiwan Inst. Chem. Eng. 2016, 63, 482–489. DOI: 10.1016/j.jtice.2016.03.005.
  • Salahshoor, Z.; Shahbazi, A. Review of the Use of Mesoporous Silicas for Removing Dye from Textile Wastewater. Eur. J. Environ. Sci. 2014, 4, 116–130. DOI: 10.14712/23361964.2014.7.
  • Sulistiyo, Y. A.; Andriana, N.; Piluharto, B.; Zulfikar, Z. Silica Gels from Coal Fly Ash as Methylene Blue Adsorbent: isotherm and Kinetic Studies. Bull. Chem. React. Eng. Catal. 2017, 12, 263–272. DOI: 10.9767/bcrec.12.2.766.263-272.
  • Ennaert, T.; Van Aelst, J.; Dijkmans, J.; De Clercq, R.; Schutyser, W.; Dusselier, M.; Verboekend, D.; Sels, B. F. Potential and Challenges of Zeolite Chemistry in the Catalytic Conversion of Biomass. Chem. Soc. Rev. 2016, 45, 584–611. DOI . DOI: 10.1039/c5cs00859j.
  • Sabir, A.; Altaf, F.; Shafiq, M. Synthesis and Characterization and Application of Chitin and Chitosan-Based Eco-Friendly Polymer Composites. In Sustainable Polymer Composites and Nanocomposites; Springer, Cham, 2019, pp. 1365–1405. DOI: 10.1007/978-3-030-05399-4.
  • Ren, Y.; Zhang, M.; Zhao, D. Synthesis, and Properties of Magnetic Cu (II) Ion Imprinted Composite Adsorbent for Selective Removal of Copper. Desalination 2008, 228, 135–149. DOI: 10.1016/j.desal.2007.08.013.
  • Ahmaruzzaman, M. Adsorption of Phenolic Compounds on Low-Cost Adsorbents: A Review. Adv. Colloid Interface Sci. 2008, 143, 48–67. DOI: 10.1016/j.cis.2008.07.002.
  • Wang, M.; Ma, Y.; Sun, Y.; Hong, S. Y.; Lee, S. K.; Yoon, B.; Chen, L.; Ci, L.; Nam, J. D.; Chen, X.; Suhr, J. Hierarchical Porous Chitosan Sponges as Robust and recyclableAdsorbents for Anionic Dye Adsorption. Sci. Rep. 2017, 7, 1–11. DOI: 10.1038/s41598-017-18302-0.
  • Yu, J.; Wang, J.; Jiang, Y. Removal of Uranium from Aqueous Solution by Alginate Beads. Nucl. Eng. Technol. 2017, 49, 534–540. DOI: 10.1016/j.net.2016.09.004.
  • Gok, C.; Aytas, S. Biosorption of Uranium (VI) from Aqueous Solution Using Calcium Alginate Beads. J. Hazard Mater. 2009, 168, 369–375. DOI. DOI: 10.1016/j.jhazmat.2009.02.063.
  • Godiya, C. B.; Liang, M.; Sayed, S. M.; Li, D.; Lu, X. Novel Alginate/Polyethyleneimine Hydrogel Adsorbent for Cascaded Removal and Utilization of Cu2+ and Pb2+ Ions. J Environ Manage 2019, 232, 829–841. DOI: 10.1016/j.jenvman.2018.11.131.
  • Godiya, C. B.; Xiao, Y.; Lu, X. Amine Functionalized Sodium Alginate Hydrogel for Efficient and Rapid Removal of Methyl Blue in Water. Int. J. Biol. Macromol. 2020, 144, 671–681. DOI: 10.1016/j.ijbiomac.2019.12.139.
  • Gupta, P.; Diwan, B. Bacterial Exopolysaccharide Mediated Heavy Metal Removal: A Review on Biosynthesis, Mechanism, and Remediation Strategies. Biotechnol. Rep. (Amst) 2017, 13, 58–71. DOI: 10.1016/j.btre.2016.12.006.
  • Abdi, O.; Kazemi, M. A Review Study of Biosorption of Heavy Metals and Comparison between Different Biosorbents. J. Mater. Environ. Sci. 2015, 6, 1386–1399.
  • Kaushik, P.; Malik, A. Fungal Dye Decolourization: recent Advances and Future Potential. Environ. Int. 2009, 35, 127–141. DOI: 10.1016/j.envint.2008.05.010.
  • Gazso, G. L. The Key Microbial Processes in the Removal of Toxic Metals and Radionuclides from the Environment. J. Occup. Environ. Med 2001, 7, 178–185.
  • Prigione, V.; Varese, G. C.; Casieri, L.; Marchisio, V. F. Biosorption of Simulated Dyed Effluents by Inactivated Fungal Biomasses. Bioresour. Technol. 2008, 99, 3559–3567. DOI: 10.1016/j.biortech.2007.07.053.
  • F Fu, Y.; Viraraghavan, T. Dye Biosorption Sites in Aspergillus niger. Bioresour. Technol. 2002, 82, 139–145. DOI: 10.1016/s0960-8524(01)00172-9.
  • Kumar, N.; Sharma, G.; Chandel, H.; Shyam, K.; Thakur, S.; Vaswani, P.; Saxena, G. Microalgae in Wastewater Treatment and Biofuel Production: Recent Advances, Challenges, and Future Prospects. Omics Insights Environ. Bioremed. 2022, 237–271. DOI: 10.1007/978-981-19-4320-1.
  • Bayramoğlu, G.; Çelik, G.; Arica, M. Y. Biosorption of Reactive Blue 4 Dye by Native and Treated Fungus Phanerocheate chrysosporium: Batch and Continuous Flow System Studies. J. Hazard Mater. 2006, 137, 1689–1697. DOI: 10.1016/j.jhazmat.2006.05.005.
  • Rao, R. A. K.; Rehman, F. Use of Polyalthia longifolia Seeds (Seeds of Indian Mast Tree) as Adsorbent for the Removal of Cd (II) from Aqueous Solution. J Dispers Sci Technol 2012, 33, 472–481. DOI: 10.1080/02726351.2011.574890.
  • Postai, D. L.; Demarchi, C.; Zanatta, A.; Melo, F.; Rodrigues, D. C. Adsorption of Rhodamine B and Methylene Blue Dyes Using Waste of Seeds of Aleurites Moluccana, a Low-Cost Adsorbent. Alex. Eng. J. 2016, 55, 1713–1723. DOI: 10.1016/j.aej.2016.03.017.
  • Ali Khan Rao, R.; Rehman, F.; Kashifuddin, M. Removal of Cr (VI) from Electroplating Wastewater Using Fruit Peel of Leechi (Litchi chinensis). Desalination Water Treat. 2012, 49, 136–146. DOI: 10.1080/19443994.2012.708211.
  • ]Shakoor, S.; Nasar, A. Adsorptive Treatment of Hazardous Methylene Blue Dye from Artificially Contaminated Water Using Cucumis sativus Peel Waste as a Low-Cost Adsorbent. Groundw. Sustain. Dev. 2017, 5, 152–159. DOI: 10.1016/j.gsd.2017.06.005.
  • Akram, S.; Javed, T. Capability of Potato Peel Powder (PPP) for the Adsorption of Hazardous Anionic Congo Dye. J. Dispers. Sci. Technol. 2022, 1–14. DOI: 10.1080/01932691.2022.2125006.
  • Franco, D. S.; Tanabe, E. H.; Dotto, G. L. Continuous Adsorption of a Cationic Dye on Surface Modified Rice Husk: Statistical Optimization and Dynamic Models. Chem. Eng. Commun. 2017, 204, 625–634. DOI: 10.1080/00986445.2017.1300150.
  • Sun, C.; Chen, T.; Huang, Q.; Wang, J.; Lu, S.; Yan, J. Enhanced Adsorption for Pb (II) and Cd (II) of Magnetic Rice Husk Biochar by KMnO4 Modification. Environ. Sci. Pollut. Res. Int. 2019, 26, 8902–8913. DOI: 10.1007/s11356-019-04321-z.
  • Dang, B.-T.; Bui, X.-T.; Tran, D. P.; Hao Ngo, H.; Nghiem, L. D.; Hoang, T.-K.-D.; Nguyen, P.-T.; Nguyen, H. H.; Vo, T.-K.-Q.; Lin, C.; et al. Current Application of Algae Derivatives for Bioplastic Production: A Review. Bioresour. Technol. 2022, 347, 126698. DOI: 10.1016/j.biortech.2022.126698.
  • Romero, J. B.; Villanueva, R. D.; Montaño, M. N. E. Stability of Agar in the Seaweed Gracilaria Eucheumatoides (Gracilariales, Rhodophyta) during Postharvest Storage. Bioresour. Technol. 2008, 99, 8151–8155. DOI: 10.1016/j.biortech.2008.03.017.
  • Samiey, B.; Ashoori, F. Adsorptive Removal of Methylene Blue by Agar: Effects of NaCl and Ethanol. Chem. Cent. J. 2012, 6, 13. DOI: 10.1186/1752-153X-6-14.
  • Saidi, S.; Boudrahem, F.; Yahiaoui, I.; Aissani-Benissad, F. Agar-Agar Impregnated on Porous Activated Carbon as a New Adsorbent for Pb (II) Removal. Water Sci. Technol. 2019, 79, 1316–1326. DOI: 10.2166/wst.2019.128.
  • Hubbe, M. A.; Beck, K. R.; O'Neal, W. G.; Sharma, Y. C. Cellulosic Substrates for Removal of Pollutants from Aqueous Systems: A Review 1. Dyes. BioResources 2012, 7, 2592–2687. DOI: 10.15376/biores.7.2.2592-2687.
  • Hubbe, M. A.; Hasan, S. H.; Ducoste, J. J. Cellulosic Substrates for Removal of Pollutants from Aqueous Systems: A Review 1. Metals. BioRes 2011, 6, 2161–2287. DOI: 10.15376/biores.6.2.2161-2287.
  • Carpenter, A. W.; de Lannoy, C. F.; Wiesner, M. R. Cellulose Nanomaterials in Water Treatment Technologies. Environ. Sci. Technol. 2015, 49, 5277–5287. DOI: 10.1021/es506351r.
  • Hubbe, M. A.; Rojas, O. J.; Lucia, L. A.; Sain, M. Cellulosic Nanocomposites: A Review. BioResources 2008, 3, 929–980.
  • Wei, H.; Rodriguez, K.; Renneckar, S.; Vikesland, P. J. Environmental Science and Engineering Applications of Nanocellulose-Based Nanocomposites. Environ. Sci. Nano 2014, 1, 302–316. DOI: 10.1039/C4EN00059E.
  • Zaidi, N.; Lim, L. B. L.; Usman, A. Artocarpus odoratissimus Leaf-Based Cellulose as Adsorbent for Removal of Methyl Violet and Crystal Violet Dyes from Aqueous Solution. Cellulose 2018, 25, 3037–3049. DOI: 10.1007/s10570-018-1762-y.
  • Luo, X.; Zeng, J.; Liu, S.; Zhang, L. An Effective and Recyclable Adsorbent for the Removal of Heavy Metal Ions from Aqueous System: Magnetic Chitosan/Cellulose Microspheres. Bioresour. Technol. 2015, 194, 403–406. DOI: 10.1016/j.biortech.2015.07.044.
  • Aichour, A.; Zaghouane-Boudiaf, H. Single and Competitive Adsorption Studies of Two Cationic Dyes from Aqueous Mediums onto Cellulose-Based Modified Citrus Peels/Calcium Alginate Composite. Int. J. Biol. Macromol. 2020, 154, 1227–1236. DOI. DOI: 10.1016/j.ijbiomac.2019.10.277.
  • Bhatnagar, A.; Sillanpää, M. Utilization of Agro-Industrial and Municipal Waste Materials as Potential Adsorbents for Water Treatment—A Review. Chem. Eng. J. 2010, 157, 277–296. DOI: 10.1016/j.cej.2010.01.007.
  • Xue, Y.; Wu, S.; Zhou, M. Adsorption Characterization of Cu (II) from Aqueous Solution onto Basic Oxygen Furnace Slag. J. Chem. Eng. 2013, 231, 355–364. DOI: 10.1016/j.cej.2013.07.045.
  • Bhatnagar, A.; Vilar, V. J.; Botelho, C. M.; Boaventura, R. A. A Review of the Use of Red Mud as Adsorbent for the Removal of Toxic Pollutants from Water and Wastewater. Environ. Technol. 2011, 32, 231–249. DOI: 10.1080/09593330.2011.560615.
  • Abdel-Khalek, M. A.; Rahman, M. A.; Francis, A. A. Exploring the Adsorption Behavior of Cationic and Anionic Dyes on Industrial Waste Shells of Egg. J. Environ. Chem. Eng. 2017, 5, 319–327. DOI: 10.1016/j.jece.2016.11.043.
  • Pan, B.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q.; Zheng, S. Development of Polymeric and Polymer-Based Hybrid Adsorbents for Pollutants Removal from Waters. Chem. Eng. Technol. 2009, 151, 19–29. DOI: 10.1016/j.cej.2009.02.036.
  • Al Hamouz, O. C. S.; Ali, S. A, 2012 Removal of Heavy Metal Ions Using a Novel Cross-Linked Polyzwitterionic Phosphonate. Sep. Purif. Technol. 2012, 98, 94–101. DOI: 10.1016/j.seppur.2012.07.019.
  • Rager, T.; Schuster, M.; Steininger, H.; Kreuer, K. D. Poly (1, 3‐Phenylene‐5‐Phosphonic Acid), a Fully Aromatic Polyelectrolyte with High Ion Exchange Capacity. Adv. Mater. 2007, 19, 3317–3321. DOI: 10.1002/adma.200602788.
  • Sata, T.; Sata, T.; Yang, W. Studies on Cation-Exchange Membranes Having Permselectivity between Cations in Electrodialysis. J. Membr. Sci. 2002, 206, 31–60. DOI: 10.1016/S0376-7388(01)00491-4.
  • Dabrowski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective Removal of the Heavy Metal Ions from Waters and Industrial Wastewaters by Ion-Exchange Method. Chemosphere 2004, 56, 91–106. DOI: 10.1016/j.chemosphere.2004.03.006.
  • Rivas, B. L.; Pereira, E. Water‐Soluble Polymeric Materials with the Ability to Bind Metal Ions. Macromol. Symp. 2003, 193, 237–250. DOI: 10.1002/masy.200390056.
  • Lacour, S.; Deluchat, V.; Bollinger, J. C.; Serpaud, B. Complexation of Trivalent Cations (Al (III), Cr (III), Fe (III)) with Two Phosphonic Acids in the pH Range of Fresh Waters. Talanta 1998, 46, 999–1009. DOI: 10.1016/s0039-9140(97)00369-x.
  • Nasar, A.; Mashkoor, F. Application of Polyaniline-Based Adsorbents for Dye Removal from Water and Wastewater—A Review. Environ. Sci. Pollut. Res. Int. 2019, 26, 5333–5356. DOI: 10.1007/s11356-018-3990-y.
  • Saini, P. Conjugated Polymer-Based Blends, Copolymers, and Composites: synthesis, Properties, and Applications. Fundam. Conjugated Polym. Blends. Copolym. Compos. 2015, 1–118.
  • Shabandokht, M.; Binaeian, E.; Tayebi, H. A. Adsorption of Food Dye Acid Red 18 onto Polyaniline-Modified Rice Husk Composite: isotherm and Kinetic Analysis. Desalin. Water Treat. 2016, 57, 1–13. DOI: 10.1080/19443994.2016.1172982.
  • Mansour, M. S.; Ossman, M. E.; Farag, H. A. Removal of Cd (II) Ion from Wastewater by Adsorption onto Polyaniline Coated on Sawdust. Desalination 2011, 272, 301–305. DOI: 10.1016/j.desal.2011.01.037.
  • Ngah, W. W.; Teong, L. C.; Hanafiah, M. M. Adsorption of Dyes and Heavy Metal Ions by Chitosan Composites: A Review. Carbohydr. Polym. 2011, 83, 1446–1456. DOI: 10.1016/j.carbpol.2010.11.004.
  • Ryan, C. C.; Bardosova, M.; Pemble, M. E. Structural and Mechanical Properties of a Range of Chitosan-Based Hybrid Networks Loaded with Colloidal Silica and Polystyrene Particles. J. Mater. Sci. 2017, 52, 8338–8347. DOI: 10.1007/s10853-017-1051-4.
  • Sargın, İ.; Kaya, M.; Arslan, G.; Baran, T.; Ceter, T. Preparation and Characterisation of Biodegradable Pollen–Chitosan Microcapsules and Its Application in Heavy Metal Removal. Bioresour Technol 2015, 177, 1–7. DOI. DOI: 10.1016/j.biortech.2014.11.067.
  • Ma, H.; Kong, A.; Ji, Y.; He, B.; Song, Y.; Li, J. Ultrahigh Adsorption Capacities for Anionic and Cationic Dyes from Wastewater Using Only Chitosan. J. Clean. Prod. 2019, 214, 89–94. DOI: 10.1016/j.jclepro.2018.12.217.
  • El-Sayed, M. E. Nanoadsorbents for Water and Wastewater Remediation. Sci. Total Environ. 2020, 739, 139903.
  • Ali, I.; Asim, M.; Khan, T. A. Low Cost Adsorbents for the Removal of Organic Pollutants from Wastewater. J. Environ. Manage. 2012, 113, 170–183. DOI: 10.1016/j.jenvman.2012.08.028.
  • S Shelley, S. A. Nanotechnology: turning Basic Science into Reality. Nanotechnology: Environmental Implications and Solutions; 2005, pp. 61–107.
  • Kurniawan, T. A.; Sillanpää, M. E.; Sillanpää, M. Nanoadsorbents for Remediation of Aquatic Environment: Local and Practical Solutions for Global Water Pollution Problems. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1233–1295. DOI: 10.1080/10643389.2011.556553.
  • Salavati-Niasari, M. Ship-in-a-Bottle Synthesis, Characterization and Catalytic Oxidation of Styrene by Host (Nanopores of zeolite-Y)/Guest ([Bis (2-Hydroxyanil) Acetylacetonato Manganese (III)]) Nanocomposite Materials (HGNM). Microporous Mesoporous Mater. 2006, 95, 248–256. DOI: 10.1016/j.micromeso.2006.05.025.
  • Zhang, W.; Chen, J.; Zhang, G. S. Preparation and Evaluation of Fe-La Composite Oxide Nanoadsorbent for as (III) Removal from Aqueous Solutions. Huan Jing Ke Xue 2014, 35, 4198–4204.
  • Liu, Y.; Fu, R.; Lou, Z.; Fang, W.; Wang, Z.; Xu, X. Preparation of Functional Carbon-Based Materials for Removal of Heavy Metals from Aqueous Solution. Prog. Chem. 2015, 27, 1665–1678.
  • Kumar, A. S. K.; Jiang, S. J.; Tseng, W. L. Effective Adsorption of Chromium (VI)/Cr (III) from Aqueous Solution Using Ionic Liquid Functionalized Multiwalled Carbon Nanotubes as a Super Sorbent. J. Mater. Chem. A 2015, 3, 7044–7057. DOI: 10.1039/C4TA06948J.
  • Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y. S.; Jiang, Y.; Gao, B. Surface Functional Groups of Carbon-Based Adsorbents and Their Roles in the Removal of Heavy Metals from Aqueous Solutions: A Critical Review. Chem. Eng. J. 2019, 366, 608–621. DOI: 10.1016/j.cej.2019.02.119.
  • Yu, J.; Jiang, C.; Guan, Q.; Ning, P.; Gu, J.; Chen, Q.; Zhang, J.; Miao, R. Enhanced Removal of Cr (VI) from Aqueous Solution by Supported ZnO Nanoparticles on Biochar Derived from Waste Water Hyacinth. Chemosphere 2018, 195, 632–640. DOI: 10.1016/j.chemosphere.2017.12.128.
  • Liu, Y.; Xu, J.; Cao, Z.; Fu, R.; Zhou, C.; Wang, Z.; Xu, X. Adsoption Behavior and Mechanism of Pb (II) and Complex Cu (II) Species by Biowaste-Derived Char with Amino Functionalization. J. Colloid Interface Sci. 2020, 559, 215–225. DOI: 10.1016/j.jcis.2019.10.035.
  • Novais, R. M.; Caetano, A. P.; Seabra, M. P.; Labrincha, J. A.; Pullar, R. C. Extremely Fast and Efficient Methylene Blue Adsorption Using Eco-Friendly Cork and Paper Waste-Based Activated Carbon Adsorbents. J. Clean. Prod. 2018, 197, 1137–1147. DOI: 10.1016/j.jclepro.2018.06.278.
  • Thanarasu, A.; Periyasamy, K.; Periyaraman, P. M.; Devaraj, T.; Velayutham, K.; Subramanian, S. Comparative Studies on Adsorption of Dye and Heavy Metal Ions from Effluents Using Eco-Friendly Adsorbent. Mater. Today: Proc. 2021, 36, 775–781. DOI: 10.1016/j.matpr.2020.07.001.
  • Yılmaz, C.; Güzel, F. Sorptive Removal of Copper (II) from Water by Biochar Produced from a Novel Sustainable Feedstock: wild Herbs. Environ. Sci. Pollut. Res. Int. 2021, 28, 995–1005. DOI: 10.1007/s11356-020-10560-2.
  • Jabar, J. M.; Owokotomo, I. A.; Ayinde, Y. T.; Alafabusuyi, A. M.; Olagunju, G. O.; Mobolaji, V. O. Characterization of Prepared Eco-Friendly Biochar from Almond (Terminalia Catappa L) Leaf for Sequestration of Bromophenol Blue (BPB) from Aqueous Solution. Carbon Lett. 2021, 31, 1001–1014. DOI: 10.1007/s42823-020-00214-1.
  • Zeng, S.; Zhong, D.; Xu, Y.; Zhong, N. Biochar-Loaded nZVI/Ni Bimetallic Particles for Hexavalent Chromium Removal from Aqueous Solution. J. Dispers. Sci. Technol. 2022, 1–12. DOI: 10.1080/01932691.2022.2052310.
  • Rubangakene, N. O.; Elkady, M.; Elwardany, A.; Fujii, M.; Sekiguchi, H.; Shokry, H. Effective Decontamination of Methylene Blue from Aqueous Solutions Using Novel Nano-Magnetic Biochar from Green Pea Peels. Environ. Res. 2023, 220, 115272. DOI: 10.1016/j.envres.2023.115272.
  • Zhang, W. X.; Chen, X.; Xiao, G. S.; Liang, J. Y.; Kong, L. J.; Yao, X. W.; Diao, Z. H. A Novel Pigeon Waste Based Biochar Composite for the Removal of Heavy Metal and Organic Compound: Performance, Products and Mechanism. Colloids Surf. A: Physicochem. Eng. Asp 2023, 666, 131277. DOI: 10.1016/j.colsurfa.2023.131277.
  • Cong, P.; Mei, L. Using Silica Fume for Improvement of Fly Ash/Slag Based Geopolymer Activated with Calcium Carbide Residue and Gypsum. Constr. Build. Mater. 2021, 275, 122171. DOI: 10.1016/j.conbuildmat.2020.122171.
  • Zhao, J.; Tong, L.; Li, B.; Chen, T.; Wang, C.; Yang, G.; Zheng, Y. Eco-Friendly Geopolymer Materials: A Review of Performance Improvement, Potential Application and Sustainability Assessment. J. Clean. Prod. 2021, 307, 127085. DOI: 10.1016/j.jclepro.2021.127085.
  • Maleki, A. An Efficient Magnetic Heterogeneous Nanocatalyst for the Synthesis of Pyrazinoporphyrazine Macrocycles. Polycycl. Aromat. Comp. 2018, 38, 402–409. DOI: 10.1080/10406638.2016.1221836.
  • Malek, A.; Eskandarpour, V.; Rahimi, J.; Hamidi, N. Cellulose Matrix Embedded Copper Decorated Magnetic Bionanocomposite as a Green Catalyst in the Synthesis of Dihydropyridines and Polyhydroquinolines. Carbohydr. Polym. 2019, 208, 251–260. DOI: 10.1016/j.carbpol.2018.12.069.
  • Jin, H.; Zhang, Y.; Wang, Q.; Chang, Q.; Li, C. Rapid Removal of Methylene Blue and Nickel Ions and Adsorption/Desorption Mechanism Based on Geopolymer Adsorbent. Colloids Interface Sci. Commun. 2021, 45, 100551. DOI: 10.1016/j.colcom.2021.100551.
  • Sirajudheen, P.; Karthikeyan, P.; Ramkumar, K.; Nisheetha, P.; Meenakshi, S. Magnetic Carbon-Biomass from the Seeds of Moringa Oleifera@ MnFe2O4 Composite as an Effective and Recyclable Adsorbent for the Removal of Organic Pollutants from Water. J. Mol. Liq. 2021, 327, 114829. DOI: 10.1016/j.molliq.2020.114829.
  • Açışlı, Ö.; Acar, İ.; Khataee, A. Preparation of a Surface Modified Fly Ash-Based Geopolymer for Removal of an Anionic Dye: Parameters and Adsorption Mechanism. Chemosphere 2022, 295, 133870. DOI: 10.1016/j.chemosphere.2022.133870.
  • Bernard, K. N.; Prakash, O.; Hippargi, G.; Sylvere, N. K.; Joseph, K. G.; Pal, S. Exploring the Applicability of a Geopolymer and a Biopolymer as an Environmentally Benign Treatment Option for Heavy Metals Contaminated Water. J. Taiwan Inst. Chem. Eng. 2022, 135, 104392. 1DOI: 10.1016/j.jtice.2022.104392.
  • Khan, S. A.; Hussain, D.; Abbasi, N.; Khan, T. A. (2022) Deciphering the Adsorption Potential of a Functionalized Green Hydrogel Nanocomposite for Aspartame from Aqueous Phase. Chemosphere 2022, 289, 133232. DOI: 10.1016/j.chemosphere.2021.133232.
  • Thakur, S.; Sharma, B.; Verma, A.; Chaudhary, J.; Tamulevicius, S.; Thakur, V. K. Recent Progress in Sodium Alginate Based Sustainable Hydrogels for Environmental Applications. J. Clean. Prod. 2018, 198, 143–159. DOI: 10.1016/j.jclepro.2018.06.259.
  • Benhalima, T.; Ferfera-Harrar, H.; Lerari, D. Optimization of Carboxymethyl Cellulose Hydrogels Beads Generated by an Anionic Surfactant Micelle Templating for Cationic Dye Uptake: Swelling, Sorption, and Reusability Studies. Int. J. Biol. Macromol. 2017, 105, 1025–1042. DOI. DOI: 10.1016/j.ijbiomac.2017.07.135.
  • Zhao, H.; Li, Y. Eco-Friendly Floatable Foam Hydrogel for the Adsorption of Heavy Metal Ions and Use of the Generated Waste for the Catalytic Reduction of Organic Dyes. Soft Matter 2020, 16, 6914–6923. DOI: 10.1039/d0sm00756k.
  • Santoso, S. P.; Kurniawan, A.; Soetaredjo, F. E.; Cheng, K. C.; Putro, J. N.; Ismadji, S.; Ju, Y. H. Eco-Friendly Cellulose–Bentonite Porous Composite Hydrogels for Adsorptive Removal of Azo Dye and Soilless Culture. Cellulose 2019, 26, 3339–3358. DOI: 10.1007/s10570-019-02314-2.
  • Khan, S. A.; Siddiqui, M. F.; Khan, T. A. Ultrasonic-Assisted Synthesis of Polyacrylamide/Bentonite Hydrogel Nanocomposite for the Sequestration of Lead and Cadmium from Aqueous Phase: Equilibrium, Kinetics, and Thermodynamic Studies. Ultrason. Sonochem. 2020, 60, 104761. DOI: 10.1016/j.ultsonch.2019.104761.
  • Güngör, Z.; Ozay, H. Use of Cationic p [2-(Acryloyloxy) Ethyl] Trimethylammonium Chloride in Hydrogel Synthesis and Adsorption of Methyl Orange with Jeffamine Based Crosslinker. J. Dispers. Sci. Technol. 2022, 1–16. DOI: 10.1080/01932691.2022.2129676.
  • Zhang, Y.; Wang, P.; Hussain, Z.; Zhang, H.; Wang, H.; Chang, N.; Li, F. Modification and Characterization of Hydrogel Beads and Its Used as Environmentally Friendly Adsorbent for the Removal of Reactive Dyes. J. Clean. Prod. 2022, 342, 130789. DOI 15. DOI: 10.1016/j.jclepro.2022.130789.
  • Wen, Y.; Xue, C.; Ji, D.; Hou, Y.; Li, K.; Li, Y. Eco-Friendly Enteromorpha Polysaccharides-Based Hydrogels for Heavy Metal Adsorption: From Waste to Efficient Materials. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130531. DOI: 10.1016/j.colsurfa.2022.130531.
  • Khan, M. F.; Ahmed, H.; Almashhadani, H. A.; Al-Bahrani, M.; Khan, A. U.; Ali, S.; Gul, N.; Hassan, T.; Ismail, A.; Zahid, M. Sustainable Adsorptive Removal of High Concentration Organic Contaminants from Water Using Biodegradable Gum-Acacia Integrated Magnetite Nanoparticles Hydrogel Adsorbent. Inorg. Chem. Commun. 2022, 145, 110057. DOI: 10.1016/j.inoche.2022.110057.
  • Gupta, K.; Joshi, P.; Gusain, R.; Khatri, O. P. Recent Advances in Adsorptive Removal of Heavy Metal and Metalloid Ions by Metal Oxide-Based Nanomaterials. Coord. Chem. Rev. 2021, 445, 214100. DOI: 10.1016/j.ccr.2021.214100.
  • El-Kemary, M. A.; El-Mehasseb, I. M.; Shoueir, K. R.; El.; Shafey, S. E.; El.; Shafey, O. I.; Aljohani, H. A.; Fouad, R. R. Sol-Gel TiO2 Decorated on Eggshell Nanocrystal as Engineered Adsorbents for Removal of Acid Dye. J. Dispers. Sci. Technol. 2018, 39, 911–921. DOI . DOI: 10.1080/01932691.2017.1410829.
  • Fakhar, N.; Siddiqi, W. A.; Khan, T. A.; Siddiqui, M. F. Fabrication of Ananas Comosus Leaf Extract Modified Titanium Dioxide Nano Bio Adsorbent for the Sequestration of Basic Dye from Aqueous Phase: equilibrium and Kinetic Studies. Mater. Res. Express 2020, 7, 15077. DOI: 10.1088/2053-1591/ab67f2.
  • Assirey, E. A.; Sirry, S. M.; Burkani, H. A.; Ibrahim, M. A. Modified Ziziphus Spina-Christi Stones as Green Route for the Removal of Heavy Metals. Sci. Rep. 2020, 10, 1–10. DOI: 10.1038/s41598-020-76810-y.
  • Rehman, R.; Farooq, S.; Mahmud, T. Use of Agro-Waste Musa acuminata and Solanum tuberosum Peels for Economical Sorptive Removal of Emerald Green Dye in Ecofriendly Way. J. Clean. Prod. 2019, 206, 819–826. DOI: 10.1016/j.jclepro.2018.09.226.
  • Ahmad, R.; Ansari, K. Chemically Treated Lawsonia Inermis Seeds Powder (CTLISP): an Eco-Friendly Adsorbent for the Removal of Brilliant Green Dye from Aqueous Solution. Groundw. Sustain. Dev. 2020, 11, 100417. DOI: 10.1016/j.gsd.2020.100417.
  • Kabir, M. M.; Akter, M. M.; Khandaker, S.; Gilroyed, B. H.; Didar-Ul-Alam, M.; Hakim, M.; Awual, M. R. Highly Effective Agro-Waste Based Functional Green Adsorbents for Toxic Chromium (VI) Ion Removal from Wastewater. J. Mol. Liq. 2022, 347, 118327. 118327DOI: 10.1016/j.molliq.2021.118327.
  • Nasiri, A.; Rajabi, S.; Hashemi, M. CoFe2O4@ Methylcellulose/AC as a New, Green, and Eco-Friendly Nano-Magnetic Adsorbent for Removal of Reactive Red 198 from Aqueous Solution. Arab. J. Chem. 2022, 15, 103745. DOI: 10.1016/j.arabjc.2022.103745.
  • Allen, S. J.; Mckay, G.; Porter, J. F. Adsorption Isotherm Models for Basic Dye Adsorption by Peat in Single and Binary Component Systems. J. Colloid Interface Sci. 2004, 280, 322–333. DOI: 10.1016/j.jcis.2004.08.078.
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • Febrianto, J.; Kosasih, A. N.; Sunarso, J.; Ju, Y. H.; Indraswati, N.; Ismadji, S. Equilibrium and Kinetic Studies in Adsorption of Heavy Metals Using Biosorbent: A Summary of Recent Studies. J. Hazard Mater. 2009, 162, 616–645. DOI: 10.1016/j.jhazmat.2008.06.042.
  • Ghaedi, M.; Najibi, A.; Hossainian, H.; Shokrollahi, A.; Soylak, M. Kinetic and Equilibrium Study of Alizarin Red S Removal by Activated Carbon. Toxicol. Environ. Chem. 2012, 94, 40–48. DOI: 10.1080/02772248.2011.636043.
  • Baskaralingam, P.; Pulikesi, M.; Elango, D.; Ramamurthi, V.; Sivanesan, S. Adsorption of Acid Dye onto Organobentonite. J. Hazard Mater. 2006, 128, 138–144. DOI: 10.1016/j.jhazmat.2005.07.049.
  • Freundlich, H. M. F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471.
  • Afroze, S.; Sen, T.; Ang, M. Agricultural Solid Wastes in Aqueous Phase Dye Adsorption: A Review. In Agricultural Wastes: Characteristics, Types and Management; 2015, pp. 169–213. DOI: http://hdl.handle.net/20.500.11937/20557
  • Tran, H. N.; You, S. J.; Hosseini-Bandegharaei, A.; Chao, H. P. Mistakes and Inconsistencies regarding Adsorption of Contaminants from Aqueous Solutions: A Critical Review. Water Res. 2017, 120, 88–116. DOI: 10.1016/j.watres.2017.04.014.
  • Ben-Ali, S.; Jaouali, I.; Souissi-Najar, S.; Ouederni, A. Characterization and Adsorption Capacity of Raw Pomegranate Peel Biosorbent for Copper Removal. J. Clean. Prod. 2017, 142, 3809–3821. DOI: 10.1016/j.jclepro.2016.10.081.
  • Kittappa, S.; Jais, F. M.; Ramalingam, M.; Mohd, N. S.; Ibrahim, S. Functionalized Magnetic Mesoporous Palm Shell Activated Carbon for Enhanced Removal of Azo Dyes. J. Environ. Chem. Eng. 2020, 8, 104081. DOI: 10.1016/j.jece.2020.104081.
  • Peighambardoust, S. J.; Aghamohammadi-Bavil, O.; Foroutan, R.; Arsalani, N. Removal of Malachite Green Using Carboxymethyl Cellulose-g-Polyacrylamide/Montmorillonite Nanocomposite Hydrogel. Int. J. Biol. Macromol. 2020, 159, 1122–1131. DOI: 10.1016/j.ijbiomac.2020.05.093.
  • Lagergren, S. K. About the Theory of so-Called Adsorption of Soluble Substances. Kongl. Vetensk. Acad. Handl. (IPNI), Kongl. 1898, 24, 139.
  • Ho, Y. S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem 1999, 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Boyd, G. E.; Adamson, A. W.; Myers, L. S. Jr, The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. II. Kinetics. J. Am. Chem. Soc. 1947, 69, 2836–2848. DOI: 10.1021/ja01203a066.
  • Weber, W. J.; Morris, J. C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Engrg. Div. 1963, 89, 31–59. DOI: 10.1061/JSEDAI.0000430.
  • Singh, H.; Chauhan, G.; Jain, A. K.; Sharma, S. K. Adsorptive Potential of Agricultural Wastes for Removal of Dyes from Aqueous Solutions. J. Environ. Chem. Eng. 2017, 5, 122–135. DOI: 10.1016/j.jece.2016.11.030.
  • Niu, Y.; Hu, W.; Guo, M.; Wang, Y.; Jia, J.; Hu, Z. Preparation of Cotton-Based Fibrous Adsorbents for the Removal of Heavy Metal Ions. Carbohydr. Polym. 2019, 225, 115218. DOI: 10.1016/j.carbpol.2019.115218.
  • Singh, S.; Kumar, A.; Gupta, H. Activated Banana Peel Carbon: A Potential Adsorbent for Rhodamine B Decontamination from Aqueous System. Appl. Water Sci. 2020, 10, 1–8. DOI: 10.1007/s13201-020-01274-4.
  • Ganguly, P.; Sarkhel, R.; Das, P. Synthesis of Pyrolyzed Biochar and Its Application for Dye Removal: Batch, Kinetic and Isotherm with Linear and Non-Linear Mathematical Analysis. Surf. Interfaces 2020, 20, 100616. DOI: 10.1016/j.surfin.2020.100616.
  • Mukhopadhyay, R.; Bhaduri, D.; Sarkar, B.; Rusmin, R.; Hou, D.; Khanam, R.; Sarkar, S.; Biswas, J. K.; Vithanage, M.; Bhatnagar, A.; Ok, Y. S. Clay–Polymer Nanocomposites: Progress and Challenges for Use in Sustainable Water Treatment. J. Hazard Mater. 2020, 383, 121125. DOI: 10.1016/j.jhazmat.2019.121125.
  • Mao, X.; Duan, Y.; Wang, C. Mechanistic Understanding of the Adsorption Behavior of Metal Lead Ions by Attapulgite-Induced Porous Nanocomposite Hydrogels. J. Chem. Eng. Data 2018, 63, 4241–4247. DOI: 10.1021/acs.jced.8b00744.
  • Sumalinog, D. A.; Capareda, S. C.; de Luna, M. D. Evaluation of the Effectiveness and Mechanisms of Acetaminophen and Methylene Blue Dye Adsorption on Activated Biochar Derived from Municipal Solid Wastes. J. Environ. Manage. 2018, 210, 255–262. DOI: 10.1016/j.jenvman.2018.01.010.
  • Zhao, D.; Zhang, L.; Lu, Y.; Li, H.; Wang, S.; Yuan, H.; Liu, X.; Wang, C.; Zhu, X.; Lu, J. Tetraethylenepentamine Modified Magnetic Cellulose Nanocrystal Composites for Removal of Congo Red with High Adsorption Capacity. J. Dispers. Sci. Technol. 2021, 43, 1–7. DOI: 10.1080/01932691.2021.2016439.
  • Afroze, S.; Sen, T. K.; Ang, H. M. Adsorption Performance of Continuous Fixed Bed Column for the Removal of Methylene Blue (MB) Dye Using Eucalyptus Sheathiana Bark Biomass. Res. Chem. Intermed. 2016, 42, 2343–2364. DOI: 10.1007/s11164-015-2153-8.
  • Afroze, S.; Sen, T. K.; Ang, H. M. Adsorption Removal of Zinc (II) from Aqueous Phase by Raw and Base Modified Eucalyptus Sheathiana Bark: Kinetics, Mechanism and Equilibrium Study. Process Saf. Environ. Prot. 2016, 102, 336–352. DOI: 10.1016/j.psep.2016.04.009.
  • Bharathi, K. S.; Ramesh, S. T. Removal of Dyes Using Agricultural Waste as Low-Cost Adsorbents: A Review.Appl. Water Sci. 2013, 3, 773–790. DOI: 10.1007/s13201-013-0117-y.
  • Gautam, R. K.; Mudhoo, A.; Lofrano, G.; Chattopadhyaya, M. C. Biomass-Derived Biosorbents for Metal Ions Sequestration: Adsorbent Modification and Activation Methods and Adsorbent Regeneration. J. Environ. Chem. Eng. 2014, 2, 239–259. DOI: 10.1016/j.jece.2013.12.019.
  • Bhatti, H. N.; Safa, Y.; Yakout, S. M.; Shair, O. H.; Iqbal, M.; Nazir, A. Efficient Removal of Dyes Using Carboxymethyl Cellulose/Alginate/Polyvinyl Alcohol/Rice Husk Composite: adsorption/Desorption, Kinetics and Recycling Studies. Int. J. Biol. Macromol. 2020, 150, 861–870. DOI: 10.1016/j.ijbiomac.2020.02.093.
  • Riaz, Q.; Ahmed, M.; Zafar, M. N.; Zubair, M.; Nazar, M. F.; Sumrra, S. H.; Ahmad, I.; Hosseini-Bandegharaei, A. NiO Nanoparticles for Enhanced Removal of Methyl Orange: equilibrium, Kinetics, Thermodynamic and Desorption Studies. Int. J. Environ Anal. Chem. 2022, 102, 84–103. DOI: 10.1080/03067319.2020.1715383.
  • Naushad, M.; Alqadami, A. A.; AlOthman, Z. A.; Alsohaimi, I. H.; Algamdi, M. S.; Aldawsari, A. M. Adsorption Kinetics, Isotherm and Reusability Studies for the Removal of Cationic Dye from Aqueous Medium Using Arginine Modified Activated Carbon. J. Mol. Liq. 2019, 293, 111442. DOI: 10.1016/j.molliq.2019.111442.
  • Khan, T. A.; Nouman, M.; Dua, D.; Khan, S. A.; Alharthi, S. S. Adsorptive Scavenging of Cationic Dyes from Aquatic Phase by H3PO4 Activated Indian Jujube (Ziziphus mauritiana) Seeds Based Activated Carbon: Isotherm, Kinetics, and Thermodynamic Study. J. Saudi Chem. Soc. 2022, 26, 101417. DOI: 10.1016/j.jscs.2021.101417.
  • Fakhar, N.; Khan, S. A.; Siddiqi, W. A.; Khan, T. A. Ziziphus Jujube Waste-Derived Biomass as Cost-Effective Adsorbent for the Sequestration of Cd2+ from Aqueous Solution: isotherm and Kinetics Studies. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100570. DOI; . DOI: 10.1016/j.enmm.2021.100570.
  • Fakhar, N.; Khan, S. A.; Siddiqi, W. A.; Khan, T. A. Investigating the Sequestration Potential of a Novel Biopolymer-Modified Ceria/Montmorillonite Nanocomposite for Chromium and Coomassie Brilliant Blue from the Aqueous Phase: equilibrium and Kinetic Studies. Environ. Sci. Adv. 2022, 1, 558–569. DOI: 10.1039/D2VA00125J.
  • Fakhar, N.; Khan, S. A.; Khan, T.,A.; Siddiqi, W. A. Efficiency of Iron Modified Pyrus Pyrifolia Peels Biochar as a Novel Adsorbent for Methylene Blue Dye Abatement from Aqueous Phase: equilibrium and Kinetic Studies. Int. J. Phytoremediation 2022, 24, 1173–1183. DOI: 10.1080/15226514.2021.2021848.
  • El-Nemr, M. A.; Aigbe, U. O.; Hassaan, M. A.; Ukhurebor, K. E.; Ragab, S.; Onyancha, R. B.; Osibote, O. A.; El Nemr, A. The Use of biochar-NH2 Produced from Watermelon Peels as a Natural Adsorbent for the Removal of Cu (II) Ion from Water. Biomass Convers. Biorefin 2022, 17, 1–7. DOI: 10.1007/s13399-022-02327-1.
  • Al-Harby, N. F.; Albahly, E. F.; Mohamed, N. A. Synthesis and Characterization of Novel Uracil-Modified Chitosan as a Promising Adsorbent for Efficient Removal of Congo Red Dye. Polymers 2022, 14, 271. DOI: 10.3390/polym14020271.
  • Jasim, S. A.; Hachem, K.; Abdelbasset, W. K.; Yasin, G.; Suksatan, W.; Chem, C. Efficient Removal of Pb (II) Using Modified Chitosan Schiff Base@ Fe/NiFe. Int. J. Biol. Macromol. 2022, 204, 644–651. DOI: 10.1016/j.ijbiomac.2022.01.151.
  • El Nemr, A.; Shoaib, A. G.; El Sikaily, A.; Mohamed, A.; E.; Hassan, A. F. Evaluation of Cationic Methylene Blue Dye Removal by High Surface Area Mesoporous Activated Carbon Derived from Ulva Lactuca. Environ. Process 2021, 8, 311–332. DOI: 10.1007/s40710-020-00487-8.
  • El Nemr, A.; Aboughaly, R. M.; El Sikaily, A.; Ragab, S.; Masoud, M. S.; Ramadan,.; M.; S. Utilization of Sugarcane Bagasse/ZnCl 2 for Sustainable Production of Microporous Nano-Activated Carbons of Type I for Toxic Cr (VI) Removal from Aqueous Environment. Biomass Convers. Biorefin. 2021, 23, 1–20. DOI: 10.1007/s13399-021-01445-6.
  • Deb, A.; Debnath, A.; Bhattacharjee, N.; Saha, B. Ultrasonically Enhanced Dye Removal Using Conducting Polymer Functionalised ZnO Nanocomposite at near Neutral pH: kinetic Study, Isotherm Modelling and Adsorbent Cost Analysis. Int. J. Environ. Anal. Chem. 2022, 102, 8055–8074. DOI: 10.1080/03067319.2020.1843649.
  • Rusmin, R.; Sarkar, B.; Mukhopadhyay, R.; Tsuzuki, T.; Liu, Y.; Naidu, R. Facile One Pot Preparation of Magnetic Chitosan-Palygorskite Nanocomposite for Efficient Removal of Lead from Water. J. Colloid Interface Sci. 2022, 608, 575–587. DOI: 10.1016/j.jcis.2021.09.109.
  • Ahmed, M. A.; Ahmed, M. A.; Mohamed, A. A. Facile Adsorptive Removal of Dyes and Heavy Metals from Wastewaters Using Magnetic Nanocomposite of Zinc Ferrite@ Reduced Graphene Oxide. Inorg. Chem. Commun. 2022, 144, 109912. DOI: 10.1016/j.inoche.2022.109912.
  • Du, P.; Xu, L.; Ke, Z.; Liu, J.; Wang, T.; Chen, S.; Mei, M.; Li, J.; Zhu, S. A Highly Efficient Biomass-Based Adsorbent Fabricated by Graft Copolymerization: Kinetics, Isotherms, Mechanism and Coadsorption Investigations for Cationic Dye and Heavy Metal. J. Colloid Interface Sci. 2022, 616, 12–22. DOI: 10.1016/j.jcis.2022.02.048.
  • Herab, A. A.; Salari, D.; Ostadrahimi, A.; Olad, A. Preparation of Magnetic Inulin Nanocomposite and Its Application in the Removal of Methylene Blue and Heavy Metals from Aqueous Solution. Mater. Chem. Phys. 2022, 291, 126580. DOI: 10.1016/j.matchemphys.2022.126580.
  • Priyan, V.; Kumar, N.; Narayanasamy, S. Toxicological Assessment and Adsorptive Removal of Lead (Pb) and Congo Red (CR) from Water by Synthesized Iron Oxide/Activated Carbon (Fe3O4/AC) Nanocomposite. Chemosphere 2022, 294, 133758. DOI: 10.1016/j.chemosphere.2022.133758.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.