122
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Tribological evaluation of PEG-based nanolubricants modified with graphene and copper oxide

, , &
Pages 1502-1512 | Received 14 Sep 2022, Accepted 25 May 2023, Published online: 08 Jun 2023

References

  • Holmberg, K.; Andersson, P.; Erdemir, A. Global Energy Consumption Due to Friction in Passenger Cars. Tribol. Int. 2012, 47, 221–234. DOI: 10.1016/j.triboint.2011.11.022.
  • Bhushan, B.; Israelachvili, J. N.; Landman, U. Nanotribology: Friction, Wear and Lubrication at the Atomic Scale. Nature 1995, 374, 607–616. DOI: 10.1038/374607a0.
  • Mu, L.; Shi, Y.; Hua, J.; Zhuang, W.; Zhu, J. Engineering Hydrogen Bonding Interaction and Charge Separation in Bio-Polymers for Green Lubrication. J. Phys. Chem. B 2017, 121, 5669–5678. DOI: 10.1021/acs.jpcb.7b03194.
  • Shetty, P.; Mu, L.; Shi, Y. Polyelectrolyte Cellulose Gel with PEG/Water: Toward Fully Green Lubricating Grease. Carbohydr. Polym. 2020, 230, 115670. DOI: 10.1016/j.carbpol.2019.115670.
  • Soni, S.; Agarwal, M. Lubricants from Renewable Energy Sources – A Review. Green Chem. Lett. Rev. 2014, 7, 359–382. DOI: 10.1080/17518253.2014.959565.
  • Chowdary, K.; Kotia, A.; Lakshmanan, V.; Elsheikh, A. H.; Ali, M. K. A. A Review of the Tribological and Thermophysical Mechanisms of Bio-Lubricants Based Nanomaterials in Automotive Applications. J. Mol. Liq. 2021, 339, 116717. DOI: 10.1016/j.molliq.2021.116717.
  • Negi, P.; Singh, Y.; Tiwari, K. A Review on the Production and Characterization Methods of Bio-Based Lubricants. Mater. Today Proc. 2021, 46, 10503–10506. DOI: 10.1016/j.matpr.2020.12.1211.
  • Cai, T.; Liu, D.; Liu, S. Fluid-like Carbon Dots-Based Ionic Fluid towards High Efficient Lubricant Nanoadditive of Polyethylene Glycol. Diam. Relat. Mater. 2021, 114, 108317. DOI: 10.1016/j.diamond.2021.108317.
  • Mu, L.; Shi, Y.; Ji, T.; Chen, L.; Yuan, R.; Wang, H.; Zhu, J. Ionic Grease Lubricants: Protic [Triethanolamine][Oleic Acid] and Aprotic [Choline][Oleic Acid]. ACS Appl. Mater. Interfaces 2016, 8, 4977–4984. DOI: 10.1021/acsami.5b12261.
  • Ben-Shabat, S.; Kumar, N.; Domb, A. J. PEG-PLA Block Copolymer as Potential Drug Carrier: Preparation and Characterization. Macromol. Biosci. 2006, 6, 1019–1025. DOI: 10.1002/mabi.200600165.
  • Wang, L.; Gao, Y.; Li, Z.; Zhou, A.; Ping, L. Preparation and Tribological Properties of Surface-Modified ZnS Nanoparticles. Lubr. Sci. 2015, 27, 241–250. DOI: 10.1002/ls.1275.
  • Gupta, B.; Kumar, N.; Kozakov, A. T.; Kolesnikov, V. I.; Sidashov, A. V.; Dash, S. Lubrication Properties of Chemically Aged Reduced Graphene-Oxide Additives. Surf. Interfaces 2017, 7, 6–13. DOI: 10.1016/j.surfin.2017.02.005.
  • Kader, A.; Selvaraj, V.; Ramasamy, P.; Senthilkumar, K. Experimental Investigation on the Thermo-Physical Properties and Tribological Performance of Acidic Functionalized Graphene Dispersed VG-68 Hydraulic Oil-Based Nanolubricant. Diam. Relat. Mater. 2023, 133, 109740. DOI: 10.1016/j.diamond.2023.109740.
  • Shang, W.; Ye, M.; Cai, T.; Zhao, L.; Zhang, Y.; Liu, D.; Liu, S. Tuning of the Hydrophilicity and Hydrophobicity of Nitrogen Doped Carbon Dots: A Facile Approach towards High Efficient Lubricant Nanoadditives. J. Mol. Liq. 2018, 266, 65–74. DOI: 10.1016/j.molliq.2018.06.042.
  • Shang, W.; Cai, T.; Zhang, Y.; Liu, D.; Liu, S. Facile One Pot Pyrolysis Synthesis of Carbon Quantum Dots and Graphene Oxide Nanomaterials: All Carbon Hybrids as Eco-Environmental Lubricants for Low Friction and Remarkable Wear-Resistance. Tribol. Int. 2018, 118, 373–380. DOI: 10.1016/j.triboint.2017.09.029.
  • Xiao, H.; Liu, S. 2D Nanomaterials as Lubricant Additive: A Review. Mater. Des. 2017, 135, 319–332. DOI: 10.1016/j.matdes.2017.09.029.
  • Geim, A. K.; Novoselov, K. The Rise of Graphene. Nature Mater. 2007, 6, 183–191. DOI: 10.1007/978-3-319-70329-9.
  • Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. DOI: 10.1126/science.1157996.
  • Negi, A.; Bijalwan, K.; Rawat, J.; Sharma, H.; Dwivedi, C. Synthesis and Characterization of the Nanocomposites of Graphene Oxide in Polyethylene Glycol (PEG). Mater. Today Proc. 2021, 45, 4742–4745. DOI: 10.1016/j.matpr.2021.01.182.
  • Ali, M. K. A.; Xianjun, H.; Abdelkareem, M. A. A.; Gulzar, M.; Elsheikh, A. H. Novel Approach of the Graphene Nanolubricant for Energy Saving via anti-Friction/Wear in Automobile Engines. Tribol. Int. 2018, 124, 209–229. DOI: 10.1016/j.triboint.2018.04.004.
  • Saxena, N. D.; Chauhan, N. R. An Overview on Characterization of CuO Based Nano Lubricant. Mater. Today Proc. 2020, 25, 888–892. DOI: 10.1016/j.matpr.2019.12.206.
  • Kamal Kamarulzaman, M.; Hisham, S.; Kadirgama, K.; Ramasamy, D.; Samykano, M.; Saidur, R.; Yusaf, T. Improving the Thermophysical Properties of Hybrid Nanocellulose-Copper (II) Oxide (CNC-CuO) as a Lubricant Additives: A Novel Nanolubricant for Tribology Application. Fuel 2023, 332, 126229. DOI: 10.1016/j.fuel.2022.126229.
  • Ali, M. K. A.; Xianjun, H. Exploring the Lubrication Mechanism of CeO2 Nanoparticles Dispersed in Engine Oil by Bis(2-Ethylhexyl) Phosphate as a Novel Antiwear Additive. Tribol. Int. 2022, 165, 107321. DOI: 10.1016/j.triboint.2021.107321.
  • Sepehrnia, M.; Farrokh, M. J.; Karimi, M.; Mohammadzadeh, K. Experimental Study and Development of Mathematical Model Using Surface Response Method to Predict the Rheological Performance of CeO2-CuO/10W40 Hybrid Nanolubricant. Arab. J. Chem. 2023, 16, 104721. DOI: 10.1016/j.arabjc.2023.104721.
  • Fazlali, A.; Ghalehkhondabi, V.; Alahyarpur, F. The Experimental Comparison between the Effect of Copper Oxide and Graphene Nanoparticles on Rheological Behavior and Thermal Properties of Engine Oil. Pet. Sci. Technol. 2022, 40, 803–821. DOI: 10.1080/10916466.2021.2006705.
  • Shi, S. C.; Jiang, S. Z. Influence of Graphene/Copper Hybrid Nanoparticle Additives on Tribological Properties of Solid Cellulose Lubricants. Surf. Coatings Technol. 2020, 389, 125655. DOI: 10.1016/j.surfcoat.2020.125655.
  • Singh, D.; Ranganathan, A.; Diddakuntla, G. Tribological Analysis of Putranjiva Oil with Effect of CuO as an Additive. Mater. Today Proc. 2021, 46, 10634–10637. DOI: 10.1016/j.matpr.2021.01.378.
  • Rajaganapathy, C.; Vasudevan, D.; Murugapoopathi, S. Tribological and Rheological Properties of Palm and Brassica Oil with Inclusion of CuO and TiO2 Additives. Mater. Today Proc. 2021, 37, 207–213. DOI: 10.1016/j.matpr.2020.05.032.
  • Liñeira del Río, J. M.; Guimarey, M. J. G.; Prado, J. I.; Lugo, L.; López, E. R.; Comuñas, M. J. P. Improving the Tribological Performance of a Biodegradable Lubricant Adding Graphene Nanoplatelets as Additives. J. Mol. Liq. 2022, 345, 117797. DOI: 10.1016/j.molliq.2021.117797.
  • Cao-Romero-Gallegos, J. A.; Farfan-Cabrera, L. I.; Pérez-González, J.; Marín-Santibáñez, B. M. Tribological and Rheological Evaluation of a Graphene Nanosheets-Based Lubricant for Metal-on-Metal and Wet Clutch Interfaces. Mater. Lett. 2022, 309, 131441. DOI: 10.1016/j.matlet.2021.131441.
  • ASTM Standards. Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating. Annu. B. ASTM Stand 1998, 88, 1–8.
  • Habibi, M. H.; Karimi, B. Application of Impregnation Combustion Method for Fabrication of Nanostructure CuO/ZnO Composite Oxide: XRD, FESEM, DRS and FTIR Study. J. Ind. Eng. Chem. 2014, 20, 1566–1570. DOI: 10.1016/j.jiec.2013.07.048.
  • Bourdo, S. E.; Al Faouri, R.; Sleezer, R.; Nima, Z. A.; Lafont, A.; Chhetri, B. P.; Benamara, M.; Martin, B.; Salamo, G. J.; Biris, A. S.; et al. Physicochemical Characteristics of Pristine and Functionalized Graphene. J. Appl. Toxicol. 2017, 37, 1288–1296. DOI: 10.1002/jat.3493.
  • Htwe, Y. Z. N.; Chow, W. S.; Suda, Y.; Thant, A. A.; Mariatti, M. Effect of Electrolytes and Sonication Times on the Formation of Graphene Using an Electrochemical Exfoliation Process. Appl. Surf. Sci. 2019, 469, 951–961. DOI: 10.1016/j.apsusc.2018.11.029.
  • Sequeira, M. C. M.; Pereira, M. F. V.; Avelino, H. M. N. T.; Caetano, F. J. P.; Fareleira, J. M. N. A. Viscosity Measurements of Poly(Ethyleneglycol) 400 [PEG 400] at Temperatures from 293 K to 348 K and at Pressures up to 50 MPa Using the Vibrating Wire Technique. Fluid Phase Equilib. 2019, 496, 7–16. DOI: 10.1016/j.fluid.2019.05.012.
  • Cherecheş, M.; Ibanescu, C.; Danu, M.; Cherecheş, E. I.; Minea, A. A. PEG 400-Based Phase Change Materials Nano-Enhanced with Alumina: An Experimental Approach. Alexandria Eng. J. 2022, 61, 6819–6830. DOI: 10.1016/j.aej.2021.12.029.
  • Mahendran, A.; Kumar, S. L.; Jawahar, R. R. Metrological and Tribological Characteristics of Carbon Based Nanotube. Mater. Today . 2021, 45, 6393–6399. DOI: 10.1016/j.matpr.2020.11.128.
  • Radhika, P.; Sobhan, C. B.; Chakravorti, S. Improved Tribological Behavior of Lubricating Oil Dispersed with Hybrid Nanoparticles of Functionalized Carbon Spheres and Graphene Nano Platelets. Appl. Surf. Sci. 2021, 540, 148402. DOI: 10.1016/j.apsusc.2020.148402.
  • Srinivas, V.; Chebattina, K. R. R.; Pranay, G. V. S.; Lakkoju, B.; Vandana, V. Tribological Properties of Polyol Ester – Commercial Motorbike Engine Oil Blends. J. King Saud Univ. – Eng. Sci. 2022, 34, 57–66. DOI: 10.1016/j.jksues.2020.07.016.
  • Abdel-Rehim, A. A.; Akl, S.; Elsoudy, S. Investigation of the Tribological Behavior of Mineral Lubricant Using Copper Oxide Nano Additives. Lubricants 2021, 9, 16. DOI: 10.3390/lubricants9020016.
  • Kong, L.; Sun, J.; Bao, Y. Preparation, Characterization and Tribological Mechanism of Nanofluids. RSC Adv. 2017, 7, 12599–12609. DOI: 10.1039/C6RA28243A.
  • Zareh-Desari, B.; Davoodi, B. Assessing the Lubrication Performance of Vegetable Oil-Based Nano-Lubricants for Environmentally Conscious Metal Forming Processes. J. Clean. Prod. 2016, 135, 1198–1209. DOI: 10.1016/j.jclepro.2016.07.040.
  • Lin, J.; Wang, L.; Chen, G. Modification of Graphene Platelets and Their Tribological Properties as a Lubricant Additive. Tribol. Lett. 2011, 41, 209–215. DOI: 10.1007/s11249-010-9702-5.
  • Meng, Y.; Su, F.; Chen, Y. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-Decorated Graphene in Engine Oil Nanofluid. Sci. Rep. 2016, 6, 1–12. DOI: 10.1038/srep31246.
  • Paul, G.; Hirani, H.; Kuila, T.; Murmu, N. C. Nanolubricants Dispersed with Graphene and Its Derivatives: An Assessment and Review of the Tribological Performance. Nanoscale 2019, 11, 3458–3483. DOI: 10.1039/C8NR08240E.
  • Liu, Y.; Mateti, S.; Li, C.; Liu, X.; Glushenkov, A. M.; Liu, D.; Li, L. H.; Fabijanic, D.; Chen, Y. Synthesis of Composite Nanosheets of Graphene and Boron Nitride and Their Lubrication Application in Oil. Adv. Eng. Mater. 2018, 20, 1700488. DOI: 10.1002/adem.201700488.
  • Opia, A. C.; Hamid, M. K. A.; Samion, S.; Johnson, C. A. N.; Rahim, A. B.; Abdulrahman, M. B. Nano-Particles Additives as a Promising Trend in Tribology: A Review on Their Fundamentals and Mechanisms on Friction and Wear Reduction. Evergreen 2021, 8, 777–798. DOI: 10.5109/4742121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.