89
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Chromium hydroxide microsphere synthesis using droplet microfluidics

, , , &
Pages 1815-1828 | Received 25 Jan 2023, Accepted 01 Jul 2023, Published online: 17 Aug 2023

Reference

  • Yoshida, M.; Takanabe, K.; Maeda, K.; Ishikawa, A.; Kubota, J.; Sakata, Y.; Ikezawa, Y.; Domen, K. Role and Function of Noble-Metal/Cr-Layer Core/Shell Structure Cocatalysts for Photocatalytic Overall Water Splitting Studied by Model Electrodes. J. Phys. Chem. C 2009, 113, 10151–10157. DOI: 10.1021/jp901418u.
  • Jiang, L. Y.; Xin, S.; Wu, X. L.; Li, H.; Guo, Y. G.; Wan, L. J. Non-Sacrificial Template Synthesis of Cr2O3–C Hierarchical Core/Shell Nanospheres and Their Application as Anode Materials in Lithium-Ion Batteries. J. Mater. Chem. 2010, 20, 7565–7569. DOI: 10.1039/c0jm01027h.
  • Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A. Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles. Science 2002, 298, 1006–1009. DOI: 10.1126/science.1074868.
  • Chang, C. K.; Kuo, H. L.; Tang, K. T.; Chiu, S. W. Optical Detection of Organic Vapors Using Cholesteric Liquid Crystals. Appl. Phys. Lett. 2011, 99, 073504. DOI: 10.1063/1.3627162.
  • Vollath, D.; Szabó, D. V.; Willis, J. O. Magnetic Properties of Nanocrystalline Cr2O3 Synthesized in a Microwave Plasma. Mater. Lett. 1996, 29, 271–279. DOI: 10.1016/S0167-577X(96)00158-9.
  • Ma, H.; Xu, Y.; Rong, Z.; Cheng, X.; Gao, S.; Zhang, X.; Zhao, H.; Huo, L. Highly Toluene Sensing Performance Based on Monodispersed Cr2O3 Porous Microspheres. Sens. Actuators B 2012, 174, 325–331. DOI: 10.1016/j.snb.2012.08.073.
  • Chen, L.; Song, Z.; Wang, X.; Prikhodko, S. V.; Hu, J.; Kodambaka, S.; Richards, R. Three-Dimensional Morphology Control during Wet Chemical Synthesis of Porous Chromium Oxide Spheres. ACS Appl. Mater. Interfaces 2009, 1, 1931–1937. DOI: 10.1021/am900334q.
  • Chatterjee, M.; Siladitya, B.; Ganguli, D. Chromia Microspheres by the Sol-Gel Technique. Mater. Lett. 1995, 25, 261–263. DOI: 10.1016/0167-577X(95)00179-4.
  • Gubrynowicz, L.; Strömich, T. Study on the Thermal Decomposition of Chromium (III) Nitrate Nonahydrate (CNN). Thermochim. Acta 1987, 115, 137–151. DOI: 10.1016/0040-6031(87)88360-0.
  • Yingjie, Z.; Yitai, Q.; Manwei, Z. γ-Radiation Synthesis of Nanometer-Size Amorphous Cr2O3 Powders at Room Temperature. Mater. Sci. Eng. B 1996, 41, 294–296. DOI: 10.1016/S0921-5107(96)01654-6.
  • Sohn, J. R.; Ryu, S. G.; Park, M. Y.; Pae, Y. I. Preparation and Characterization of Chromium Oxide Supported on Zirconia. J. Mater. Sci. 1993, 28, 4651–4659. DOI: 10.1007/BF00414254.
  • Dhas, N. A.; Koltypin, Y.; Gedanken, A. Sonochemical Preparation and Characterization of Ultrafine Chromium Oxide and Manganese Oxide Powders. Chem. Mater 1997, 9, 3159–3163. DOI: 10.1021/cm9704645.
  • Sen, N.; Ekhande, S.; Singh, K. K.; Mukhopadhyay, S.; Sirsam, R. S.; Shenoy, K. T. Large-Scale Synthesis of Ionic Liquid [BMIM] Br in a Microbore Tube. Chem. Eng. Res. Des. 2021, 170, 34–44. DOI: 10.1016/j.cherd.2021.02.034.
  • Sen, N.; Singh, K. K.; Mukhopadhyay, S.; Shenoy, K. T. Microfluidic Extraction of Uranium from Dilute Streams Using TiAP in Ionic Liquid as the Solvent. Chem. Eng. Res. Des. 2022, 177, 83–95. DOI: 10.1016/j.cherd.2021.08.038.
  • Zhang, Y.; Chen, X. The Mixing Performance of Passive Micromixers with Smart-Rhombic Units. J. Dispersion Sci. Technol. 2022, 43, 439–445. DOI: 10.1080/01932691.2020.1842759.
  • Razaghi, R.; Shirinzadeh, F.; Zabetian, M.; Aghanoorian, E. Velocity Domain and Volume Fraction Distribution of Heavy Microparticles in Low Reynolds Number Flow in Microchannel. J. Dispersion Sci. Technol. 2017, 38, 374–380. DOI: 10.1080/01932691.2016.1170607.
  • Yekeen, N.; Manan, M. A.; Idris, A. K.; Samin, A. M.; Risal, A. R. Mechanistic Study of Nanoparticles–Surfactant Foam Flow in Etched Glass Micro-Models. J. Dispersion Sci. Technol. 2018, 39, 623–633. DOI: 10.1080/01932691.2017.1378581.
  • Li, Z.; He, L.; Li, H.; Yu, X.; Zhao, M.; Wu, Y.; Wu, X. Flow Behaviors of a Viscoelastic Polymer Solution at 3D Micro Pore-Throat Structure. J. Dispersion Sci. Technol. 2019, 40, 1795–1803. DOI: 10.1080/01932691.2018.1542312.
  • Zhuang, Y.; Goharzadeh, A.; Lin, Y. J.; Yap, Y. F.; Chai, J. C.; Mathew, N.; Vargas, F.; Biswal, S. L. Experimental Study of Asphaltene Deposition in Transparent Microchannels Using the Light Absorption Method. J. Dispersion Sci. Technol. 2018, 39, 744–753. DOI: 10.1080/01932691.2017.1388177.
  • Sen, N.; Koli, V.; Singh, K. K.; Panicker, L.; Sirsam, R.; Mukhopadhyay, S.; Shenoy, K. T. Segmented Microfluidics for Synthesis of BaSO4 Nanoparticles. Chem. Eng. Process. Process Intensif. 2018, 125, 197–206. DOI: 10.1016/j.cep.2018.01.012.
  • Sen, N.; Ekhande, S.; Thakur, P.; Singh, K. K.; Mukhopadhyay, S.; Sirsam, R.; Patil, N.; Shenoy, K. T. Direct Precipitation of Uranium from Loaded Organic in a Microreactor. Sep. Sci. Technol. 2019, 54, 1430–1442. DOI: 10.1080/01496395.2018.1563158.
  • Sen, N.; Shaikh, T.; Singh, K. K.; Sirsam, R.; Shenoy, K. T. Synthesis of Polyacrylamide (PAM) Beads in Microreactors. Chem. Eng. Process. Process Intensif. 2020, 157, 108105. DOI: 10.1016/j.cep.2020.108105.
  • Marre, S.; Jensen, K. F. Synthesis of Micro and Nanostructures in Microfluidic Systems. Chem. Soc. Rev. 2010, 39, 1183–1202. DOI: 10.1039/b821324k.
  • Nisisako, T.; Torii, T.; Higuchi, T. Novel Microreactors for Functional Polymer Beads. Chem. Eng. J. 2004, 101, 23–29. DOI: 10.1016/j.cej.2003.11.019.
  • Zhang, T.; Zhang, X.; Yan, X.; Kong, L.; Zhang, G.; Liu, H.; Qiu, J.; Yeung, K. L. Synthesis of Fe3O4@ZIF-8 Magnetic Core–Shell Microspheres and Their Potential Application in a Capillary Microreactor. Chemical Engineering Journal 2013, 228, 398–404. DOI: 10.1016/j.cej.2013.05.020.
  • Frenz, L.; El Harrak, A.; Pauly, M.; Bégin-Colin, S.; Griffiths, A. D.; Baret, J. C. Droplet-Based Microreactors for the Synthesis of Magnetic Iron Oxide Nanoparticles. Angew. Chem. Int. Ed. Engl. 2008, 47, 6817–6820. DOI: 10.1002/anie.200801360.
  • Chokkalingam, V.; Weidenhof, B.; Krämer, M.; Maier, W. F.; Herminghaus, S.; Seemann, R. Optimized Droplet-Based Microfluidics Scheme for Sol–Gel Reactions. Lab. Chip. 2010, 10, 1700–1705. DOI: 10.1039/b926976b.
  • Ye, B.; Miao, J. L.; Li, J. L.; Zhao, Z. C.; Chang, Z.; Serra, C. A. Fabrication of Size-Controlled CeO2 Microparticles by a Microfluidic Sol–Gel Process as an Analog Preparation of Ceramic Nuclear Fuel Particles. J. Nucl. Sci. Technol. 2013, 50, 774–780. DOI: 10.1080/00223131.2013.796897.
  • Yang, Y. T.; Li, X.; Fu, C. F.; Song, T.; Chang, Z. Q.; Meng, D. Q.; Serra, C. A. Fabrication of Uniform Ce/Eu Oxide Microparticles by a Microfluidic Co-Sol-Gel Process as an Analog Preparation of MA-Bearing Ceramic Nuclear Fuel Particles. Nucl. Sci. Eng. 2015, 181, 216–224. DOI: 10.13182/NSE14-117.
  • Wang, P.; Li, J.; Nunes, J.; Hao, S.; Liu, B.; Chen, H. Droplet Micro‐Reactor for Internal Gelation to Fabricate ZrO2 Ceramic Microspheres. J. Am. Ceram. Soc. 2017, 100, 41–48. DOI: 10.1111/jace.14584.
  • Vaidya, V. N. Sol-Gel Process for Ceramic Nuclear Fuels. Trans. Indian Ceram. Soc. 2004, 63, 163–167. DOI: 10.1080/0371750X.2004.11012156.
  • Sood, D. D. The Role Sol–Gel Process for Nuclear Fuels-an Overview. J. Sol-Gel Sci. Technol. 2011, 59, 404–416. DOI: 10.1007/s10971-010-2273-y.
  • Xu, J. H.; Li, S. W.; Tan, J.; Luo, G. S. Correlations of Droplet Formation in T-Junction Microfluidic Devices: From Squeezing to Dripping. Microfluid. Nanofluid. 2008, 5, 711–717. DOI: 10.1007/s10404-008-0306-4.
  • Garstecki, P.; Fuerstman, M. J.; Stone, H. A.; Whitesides, G. M. Formation of Droplets and Bubbles in a Microfluidic T-Junction—Scaling and Mechanism of Break-up. Lab. Chip. 2006, 6, 437–446. DOI: 10.1039/b510841a.
  • Thorsen, T.; Roberts, R. W.; Arnold, F. H.; Quake, S. R. Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Phys. Rev. Lett. 2001, 86, 4163–4166. DOI: 10.1103/PhysRevLett.86.4163.
  • Cristini, V.; Tan, Y. C. Theory and Numerical Simulation of Droplet Dynamics in Complex Flows—A Review. Lab. Chip. 2004, 4, 257–264. DOI: 10.1039/b403226h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.