78
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Efficient removal of Cr(VI) from aqueous solution by hydrochloric acid and polypyrrole co-modified sludge-based biochar

, , , , , , , & show all
Pages 1851-1864 | Received 02 Dec 2022, Accepted 01 Jul 2023, Published online: 18 Jul 2023

References

  • Jobby, R.; Jha, P.; Yadav, A. K.; Desai, N. Biosorption and Biotransformation of Hexavalent Chromium Cr(VI): a Comprehensive Review. Chemosphere 2018, 207, 255–266. DOI: 10.1016/j.chemosphere.2018.05.050.
  • Hotta, H.; Yata, K.; Bin Kamarudin, K. F.; Kurihara, S.; Tsunoda, K.; Fukumoto, N.; Kojima, I.; Kinugasa, S. Determination of Chromium(III), Chromium(VI) and Total Chromium in Chromate and Trivalent Chromium Conversion Coatings by Electrospray Ionization Mass Spectrometry. Talanta 2012, 88, 533–536. DOI: 10.1016/j.talanta.2011.11.028.
  • Pradhan, D.; Sukla, L. B.; Sawyer, M.; Rahman, P. Recent Bioreduction of Hexavalent Chromium in Wastewater Treatment: A Review. J. Ind. Eng. Chem. 2017, 55, 1–20. DOI: 10.1016/j.jiec.2017.06.040.
  • Kera, N. H.; Bhaumik, M.; Pillay, K.; Ray, S. S.; Maity, A. Selective Removal of Toxic Cr(VI) from Aqueous Solution by Adsorption Combined with Reduction at a Magnetic Nanocomposite Surface. J. Colloid Interface Sci. 2017, 503, 214–228. DOI: 10.1016/j.jcis.2017.05.018.
  • Ye, Z. X.; Yin, X. B.; Chen, L. F.; He, X. Y.; Lin, Z. M.; Liu, C. C.; Ning, S. Y.; Wang, X. P.; Wei, Y. Z. An Integrated Process for Removal and Recovery of Cr(VI) from Electroplating Wastewater by Ion Exchange and Reduction-Precipitation Based on a Silica-Supported Pyridine Resin. J. Clean Prod. 2019, 236, 117631. DOI: 10.1016/j.jclepro.2019.117631.
  • Xie, B. H.; Shan, C.; Xu, Z.; Li, X. C.; Zhang, X. L.; Chen, J. J.; Pan, B. C. One-Step Removal of Cr(VI) at Alkaline pH by UV/Sulfite Process: Reduction to Cr(III) and in Situ Cr(III) Precipitation. Chem. Eng. J. 2017, 308, 791–797. DOI: 10.1016/j.cej.2016.09.123.
  • Hua, Y. X.; Hu, C. Y.; Arif, M.; Chen, S. M.; Zhang, M.; Liu, X. H. Direct Z-Scheme WO3/In2S3 Heterostructures for Enhanced Photocatalytic Reduction Cr(VI). J. Alloy. Compd. 2022, 908, 164488. DOI: 10.1016/j.jallcom.2022.164488.
  • Xia, X.; Wu, S. J.; Zhou, Z. J.; Wang, G. J. Microbial Cd(II) and Cr(VI) Resistance Mechanisms and Application in Bioremediation. J. Hazard Mater. 2021, 401, 123685. DOI: 10.1016/j.jhazmat.2020.143685.
  • Chen, J. H.; Mai, L. T. T.; Hsu, K. C. Cr (VI) Separation by PolyHIPE Membrane Immobilized with Aliquat 336 by Solvent-Nonsolvent Method. Membr. Water Treat. 2017, 8, 575–590. DOI: 10.12989/mwt.2017.8.6.575.
  • Jia, W.; Du, J.; Jiang, M.; Zhang, M. Y.; Han, E. L.; Niu, H. Q.; Wu, D. Z. Preparation and Cr (VI) Adsorption of Functionalized Polyimide Fibers. J. Appl. Polymer Sci. 2022, 139, 16. DOI: 10.1002/app.52799.
  • Agarwal, M.; Singh, K.; Renu . Heavy Metal Removal from Wastewater Using Various Adsorbents: A Review. J. Water Reuse Desalin. 2017, 7, 387–419. DOI: 10.2166/wrd.2016.104.
  • Wang, Y.; Yang, Q. X.; Chen, J. C.; Yang, J. J.; Zhang, Y. P.; Chen, Y. D.; Li, X. Q.; Du, W.; Liang, A. P.; Ho, S. H.; Chang, J. S. Adsorption Behavior of Cr(VI) by Magnetically Modified Enteromorpha prolifera Based Biochar and the Toxicity Analysis. J. Hazard Mater. 2020, 395, 122658. DOI: 10.1016/j.jhazmat.2020.122658.
  • Sessarego, S.; Rodrigues, S. C. G.; Xiao, Y.; Lu, Q. Y.; Hill, J. M. Phosphonium-Enhanced Chitosan for Cr(VI) Adsorption in Wastewater Treatment. Carbohydr. Polym. 2019, 211, 249–256. DOI: 10.1016/j.carbpol.2019.02.003.
  • Huang, J. J.; Zhao, D. L.; Zhao, Y. Y.; Tu, Y. Y.; Wang, R. Polyvinylpyrrolidone Supported nZVI/Ni Bimetallic Nanoparticles for Enhanced High-Performance Removal of Aqueous Cr(VI). Chem. Phys. Lett. 2022, 791, 139375. DOI: 10.1016/j.cplett.2022.139375.
  • Wang, C.; Xiong, C.; He, Y. L.; Yang, C.; Li, X. T.; Zheng, J. Z.; Wang, S. X. Facile Preparation of Magnetic Zr-MOF for Adsorption of Pb(II) and Cr(VI) from Water: Adsorption Characteristics and Mechanisms. Chem. Eng. J. 2021, 415, 128923. DOI: 10.1016/j.cej.2021.128923.
  • Gollakota, A. R. K.; Munagapati, V. S.; Shadangi, K. P.; Reddy, G. M.; Wen, J. C.; Shu, C. M. Encapsulating Toxic Rhodamine 6G Dye, and Cr (VI) Metal Ions from Liquid Phase Using AlPO4-5 Molecular Sieves. Preparation, Characterization, and Adsorption Parameters. J. Mol. Liq. 2021, 336, 116549. DOI: 10.1016/j.molliq.2021.116549.
  • Amaku, J. F.; Ogundare, S. A.; Akpomie, K. G.; Ngwu, C. M.; Conradie, J. Sequestered Uptake of Chromium(VI) by Irvingia gabonensis Stem Bark Extract Anchored Silica Gel. Biomass Convers. Biorefinery 2023, 13, 5611–5623. DOI: 10.1007/s13399-021-01563-1.
  • Tareq, R.; Akter, N.; Azam, M. S. Biochars and Biochar Composites: Low-Cost Adsorbents for Environmental Remediation; Elsevier Science Bv: Amsterdam, 2019.
  • Nguyen, N. T.; Lee, S. Y.; Chen, S. S.; Nguyen, N. C.; Chang, C. T.; Hsiao, S. S.; Trang, L. T.; Kao, C. Y.; Lin, M. F.; Wang, L. G. Preparation of Zn-Doped Biochar from Sewage Sludge for Chromium Ion Removal. J. Nanosci. Nanotechnol. 2018, 18, 5520–5527. DOI: 10.1166/jnn.2018.15392.
  • Gonsalvesh, L.; Gryglewicz, G.; Carleer, R.; Yperman, J. Valorization of Swine Manure into Low Cost Activated Carbons Capable of Cr(VI) Removal. Ad. Environ. Res. 2017, 6, 95–111. DOI: 10.12989/aer.2017.6.2.095.
  • Parlayici, S.; Sezer, K. T.; Pehlivan, E. Nano-ZrO2/TiO2 Impregnated Orange Wood Sawdust and Peach Stone Shell Adsorbents for Cr (VI) Removal. CAC 2020, 16, 880–892. DOI: 10.2174/1573411015666191114143128.
  • Xie, H. Z.; Wan, Y. L.; Chen, H.; Xiong, G. C.; Wang, L. Q.; Xu, Q.; Li, X.; Zhou, Q. H. Cr(VI) Adsorption from Aqueous Solution by UiO-66 Modified Corncob. Sustainability 2021, 13, 12962. DOI: 10.3390/su132312962.
  • Li, J.; Fan, M.; Li, M.; Liu, X. Cr(VI) Removal from Groundwater Using Double Surfactant-Modified Nanoscale Zero-Valent Iron (nZVI): Effects of Materials in Different Status. Sci. Total Environ. 2020, 717, 137112. DOI: 10.1016/j.scitotenv.2020.137112.
  • Wang, H.; Zhong, D. J.; Xu, Y. L.; Chang, H. X.; Shen, H. Y.; Xu, C. Z.; Mou, J. X.; Zhong, N. B. Enhanced Removal of Cr(VI) from Aqueous Solution by Nano- Zero-Valent Iron Supported by KOH Activated Sludge-Based Biochar. Colloid Surf. A-Physicochem. Eng. Asp 2022, 651, 129697. DOI: 10.1016/j.colsurfa.2022.129697.
  • Li, Y. M.; Gao, Y. Y.; Zhang, Q.; Wang, R. Y.; Li, C. J.; Mao, J. F.; Guo, L. M.; Wang, F. J.; Zhang, Z.; Wang, L. Flexible and Free-Standing Pristine Polypyrrole Membranes with a Nanotube Structure for Repeatable Cr(VI) Ion Removal. Sep. Purif. Technol. 2021, 258, 117981. DOI: 10.1016/j.seppur.2020.117981.
  • Zhou, Q.; Huang, J. L.; Zhang, X.; Gao, Y. Assembling Polypyrrole Coated Sepiolite Fiber as Efficient Particle Adsorbent for Chromium (VI) Removal with the Feature of Convenient Recycling. Appl. Clay Sci. 2018, 166, 307–317. DOI: 10.1016/j.clay.2018.09.031.
  • Senthurchelvan, R.; Wang, Y.; Basak, S.; Rajeshwar, K. Reduction of Hexavalent Chromium in Aqueous Solutions by Polypyrrole.2. Thermodynamic, Kinetic, and Mechanistic Aspects. J. Electrochem. Soc. 1996, 143, 44–51. DOI: 10.1149/1.1836385.
  • Wang, J. G.; Chen, N.; Li, M.; Feng, C. P. Efficient Removal of Fluoride Using Polypyrrole-Modified Biochar Derived from Slow Pyrolysis of Pomelo Peel: Sorption Capacity and Mechanism. J. Polym. Environ. 2018, 26, 1559–1572. DOI: 10.1007/s10924-017-1061-y.
  • Zhang, L.; Niu, W. Y.; Sun, J.; Zhou, Q. Efficient Removal of Cr(VI) from Water by the Uniform Fiber Ball Loaded with Polypyrrole: Static Adsorption, Dynamic Adsorption and Mechanism Studies. Chemosphere 2020, 248, 126102. DOI: 10.1016/j.chemosphere.2020.126102.
  • Li, L. C.; Zhong, D. J.; Xu, Y. L.; Zhong, N. B. A Novel Superparamagnetic Micro-Nano-Bio-Adsorbent PDA/Fe3O4/BC for Removal of Hexavalent Chromium Ions from Simulated and Electroplating Wastewater. Environ. Sci. Pollut. Res. Int. 2019, 26, 23981–23993. DOI: 10.1007/s11356-019-05674-1.
  • Sun, W. H.; Zhang, W. B.; Li, H. L.; Su, Q.; Zhang, P.; Chen, L. H. Insight into the Synergistic Effect on Adsorption for Cr(vi) by a Polypyrrole-Based Composite. RSC Adv. 2020, 10, 8790–8799. DOI: 10.1039/c9ra08756g.
  • Jang, M.; Hwang, J. S.; Choi, S. I. Sequential Soil Washing Techniques Using Hydrochloric Acid and Sodium Hydroxide for Remediating Arsenic-Contaminated Soils in Abandoned Iron-Ore Mines. Chemosphere 2007, 66, 8–17. DOI: 10.1016/j.chemosphere.2006.05.056.
  • Sun, W. H.; Chen, L. H.; Sun, Y.; Su, Q.; Wang, Y. B.; Liu, J. L. The Functional Polypyrrole Composite: A Class of High-Performing Cr(VI) Ion Adsorbents. J. Porous Mater. 2017, 24, 519–530. DOI: 10.1007/s10934-016-0287-8.
  • Shen, J. H.; Chen, K. Y.; Li, L. C.; Wang, W. X.; Jin, Y. Fabrication and Microwave Absorbing Properties of (Z-Type Barium Ferrite/Silica)@Polypyrrole Composites. J. Alloy. Compd. 2014, 615, 488–495. DOI: 10.1016/j.jallcom.2014.06.096.
  • Huang, X. P.; Yu, F.; Peng, Q. F.; Huang, Y. Q. Superb Adsorption Capacity of Biochar Derived from Leather Shavings for Congo Red. RSC Adv. 2018, 8, 29781–29788. DOI: 10.1039/c8ra06370b.
  • Shi, S. Q.; Yang, J. K.; Liang, S.; Li, M. Y.; Gan, Q.; Xiao, K. K.; Hu, J. P. Enhanced Cr(VI) Removal from Acidic Solutions Using Biochar Modified by Fe3O4@SiO2-NH2 Particles. Sci. Total Environ. 2018, 628–629, 499–508. DOI: 10.1016/j.scitotenv.2018.02.091.
  • Zhang, J. J.; Shao, J. G.; Jin, Q. Z.; Li, Z. Q.; Zhang, X.; Chen, Y. Q.; Zhang, S. H.; Chen, H. P. Sludge-Based Biochar Activation to Enhance Pb(II) Adsorption. Fuel 2019, 252, 101–108. DOI: 10.1016/j.fuel.2019.04.096.
  • Cai, Y. F.; Xue, J. Y.; Polya, D. A. A Fourier Transform Infrared Spectroscopic Study of Mg-Rich, Mg-Poor and Acid Leached Palygorskites. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 66, 282–288. DOI: 10.1016/j.saa.2006.02.053.
  • Fang, W.; Jiang, X. Y.; Luo, H. J.; Geng, J. J. Synthesis of Graphene/SiO2@Polypyrrole Nanocomposites and Their Application for Cr(VI) Removal in Aqueous Solution. Chemosphere 2018, 197, 594–602. DOI: 10.1016/j.chemosphere.2017.12.163.
  • Sarkar, M.; Sarkar, S. Adsorption of Cr(VI) on Iron(III) Cellulose Nanocomposite Bead. Environ. Process 2017, 4, 851–871. DOI: 10.1007/s40710-017-0275-2.
  • Wang, L. J.; Yu, J. P.; Chou, K. C.; Seetharaman, S. Effects of MgO and Al2O3 Addition on Redox State of Chromium in CaO-SiO2-CrOx Slag System by XPS Method. Metall. Mater. Trans. B 2015, 46, 1802–1808. DOI: 10.1007/s11663-015-0353-7.
  • Tian, X. K.; Wang, W. W.; Tian, N.; Zhou, C. X.; Yang, C.; Komarneni, S. Cr(VI) Reduction and Immobilization by Novel Carbonaceous Modified Magnetic Fe3O4/Halloysite Nanohybrid. J. Hazard Mater. 2016, 309, 151–156. DOI: 10.1016/j.jhazmat.2016.01.081.
  • Yang, Y. Q.; Chen, N.; Feng, C. P.; Li, M.; Gao, Y. Chromium Removal Using a Magnetic Corncob Biochar/Polypyrrole Composite by Adsorption Combined with Reduction: Reaction Pathway and Contribution Degree. Colloid Surf. A-Physicochem. Eng. Asp 2018, 556, 201–209. DOI: 10.1016/j.colsurfa.2018.08.035.
  • Xu, C. Z.; Xu, Y. L.; Zhong, D. J.; Chang, H. X.; Mou, J. X.; Wang, H.; Shen, H. Y. Zr4+ Cross-Linked Chitosan-Thiourea Composite for Efficient Detoxification of Cr(VI) Ions in Aqueous Solution. Carbohydr. Polym. 2022, 296, 119872. DOI: 10.1016/j.carbpol.2022.119872.
  • Jawad, A. H.; Sahu, U. K.; Jani, N. A.; Alothman, Z. A.; Wilson, L. D. Magnetic Crosslinked Chitosan-Tripolyphosphate/MgO/Fe3O4 Nanocomposite for Reactive Blue 19 Dye Removal: Optimization Using Desirability Function Approach. Surf. Interfaces 2022, 28, 101698. DOI: 10.1016/j.surfin.2021.101698.
  • Wang, T.; Zhang, L. Y.; Li, C. F.; Yang, W. C.; Song, T. T.; Tang, C. J.; Meng, Y.; Dai, S.; Wang, H. Y.; Chai, L. Y.; Luo, J. Synthesis of Core-Shell Magnetic Fe3O4@Poly(m-Phenylenediamine) Particles for Chromium Reduction and Adsorption. Environ. Sci. Technol. 2015, 49, 5654–5662. DOI: 10.1021/es5061275.
  • Liu, M. Y.; Zhang, X. T.; Li, Z. H.; Qu, L. B.; Han, R. P. Fabrication of Zirconium (IV)-Loaded Chitosan/Fe3O4/Graphene Oxide for Efficient Removal of Alizarin Red from Aqueous Solution. Carbohydr. Polym. 2020, 248, 116792. DOI: 10.1016/j.carbpol.2020.116792.
  • Li, L. L.; Feng, X. Q.; Han, R. P.; Zang, S. Q.; Yang, G. Cr(VI) Removal via Anion Exchange on a Silver-Triazolate MOF. J. Hazard Mater. 2017, 321, 622–628. DOI: 10.1016/j.jhazmat.2016.09.029.
  • Ifthikar, J.; Shahib, I. I.; Jawad, A.; Gendy, E. A.; Wang, S. Q.; Wu, B. B.; Chen, Z. Q.; Chen, Z. L. The Excursion Covered for the Elimination of Chromate by Exploring the Coordination Mechanisms between Chromium Species and Various Functional Groups. Coord. Chem. Rev. 2021, 437, 213868. DOI: 10.1016/j.ccr.2021.213868.
  • Yi, Y.; Wang, X. Y.; Ma, J.; Ning, P. Fe(III) Modified Egeria Najas Driven-Biochar for Highly Improved Reduction and Adsorption Performance of Cr(VI). Powder Technol. 2021, 388, 485–495. DOI: 10.1016/j.powtec.2021.04.066.
  • Mikhaylov, V. I.; Torlopov, M. A.; Vaseneva, IN.; Sitnikov, P. A. Magnetically Controlled Liquid Paraffin Oil-in-Water Pickering Emulsion Stabilized by Magnetite/Cellulose Nanocrystals: Formation and Cr (VI) Adsorption. Colloid Surf. A-Physicochem. Eng. Asp 2021, 622, 126634. DOI: 10.1016/j.colsurfa.2021.126634.
  • Adamczuk, A.; Kołodyńska, D. Equilibrium, Thermodynamic and Kinetic Studies on Removal of Chromium, Copper, Zinc and Arsenic from Aqueous Solutions onto Fly Ash Coated by Chitosan. Chem. Eng. J. 2015, 274, 200–212. DOI: 10.1016/j.cej.2015.03.088.
  • Zeng, S. J.; Zhong, D. J.; Xu, Y. L.; Zhong, N. B. A Novel Sulfide-Modified Nanoscale Zero Valent Iron Supported on Porous Anion Exchange Resin Composite for Cr(VI) Effective Removal from Waste. Chem. Phys. Lett. 2022, 794, 139494. DOI: 10.1016/jcplett.2022.139494.
  • Fu, S. O.; Di, J. Z.; Guo, X. Y.; Dong, Y. R.; Bao, S. H.; Li, H. Z. Preparation of Lignite-Loaded nano-FeS and Its Performance for Treating Acid Cr(VI)-Containing Wastewater. Environ. Sci. Pollut. Res. 2023, 30, 3351–3366. DOI: 10.1007/s11356-022-22411-3.
  • Cheng, Y. J.; Dong, H. R.; Hao, T. W. CaCO3 Coated Nanoscale Zero-Valent Iron (nZVI) for the Removal of Chromium(VI) in Aqueous Solution. Sep. Purif. Technol. 2021, 257, 117967. DOI: 10.1016/j.seppur.2020.117967.
  • Huang, Y.; Song, K.; Luo, W.; Yang, J. W. Adsorption and Reduction of Cr(VI) by Hydroxylated Multiwalled Carbon Nanotubes: Effects of Humic Acid and Surfactants. Environ. Sci. Pollut. Res. Int. 2020, 27, 12746–12754. DOI: 10.1007/s11356-020-07682-y.
  • Riahi, K.; Chaabane, S.; Ben Thayer, B. A Kinetic Modeling Study of Phosphate Adsorption onto Phoenix Dactylifera L. date Palm Fibers in Batch Mode. J. Saudi Chem. Soc. 2017, 21, S143–S152. DOI: 10.1016/j.jscs.2013.11.007.
  • Ayawei, N.; Ebelegi, A. N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 1–11. DOI: 10.1155/2017/3039817.
  • Saravanan, A.; Kumar, P. S.; Varjani, S.; Karishma, S.; Jeevanantham, S.; Yaashikaa, P. R. Effective Removal of Cr(VI) Ions from Synthetic Solution Using Mixed Biomasses: Kinetic, Equilibrium and Thermodynamic Study. J. Water Process. Eng. 2021, 40, 101905. DOI: 10.1016/j.jwpe.2020.101905.
  • Wang, S.; Zhong, D. J.; Xu, Y. L.; Zhong, N. B. Polyethylene Glycol-Stabilized Bimetallic Nickel-Zero Valent Iron Nanoparticles for Efficient Removal of Cr(vi). New J. Chem. 2021, 45, 13969–13978. DOI: 10.1039/D1NJ03122H.
  • Zhao, X.; Feng, H.; Jia, P. J.; An, Q. F.; Ma, M. H. Removal of Cr(VI) from Aqueous Solution by a Novel ZnO-Sludge Biochar Composite. Environ. Sci. Pollut. Res. 2022, 29, 83045–83059. DOI: 10.1007/s11356-022-21616-w.
  • Gupta, G. K.; Ram, M.; Bala, R.; Kapur, M.; Mondal, M. K. Pyrolysis of Chemically Treated Corncob for Biochar Production and Its Application in Cr(VI) Removal. Environ. Prog. Sustainable Energy 2018, 37, 1606–1617. DOI: 10.1002/ep.12838.
  • Xiao, R.; Wang, J. J.; Li, R. H.; Park, J.; Meng, Y. L.; Zhou, B. Y.; Pensky, S.; Zhang, Z. Q. Enhanced Sorption of Hexavalent Chromium Cr(VI) from Aqueous Solutions by Diluted Sulfuric Acid-Assisted MgO-Coated Biochar Composite. Chemosphere 2018, 208, 408–416. DOI: 10.1016/j.chemosphere.2018.05.175.
  • Liang, S.; Shi, S. Q.; Zhang, H. H.; Qiu, J. J.; Yu, W. H.; Li, M. Y.; Gan, Q.; Yu, W. B.; Xiao, K. K.; Liu, B. C.; et al. One-Pot Solvothermal Synthesis of Magnetic Biochar from Waste Biomass: Formation Mechanism and Efficient Adsorption of Cr(VI) in an Aqueous Solution. Sci. Total Environ. 2019, 695, 133886. DOI: 10.1016/j.scitotenv.2019.133886.
  • Zhao, L.; Zhao, Y.; Yang, B.; Teng, H. Application of Carboxymethyl Cellulose–Stabilized Sulfidated Nano Zerovalent Iron for Removal of Cr(VI) in Simulated Groundwater. Water Air Soil Pollut. 2019, 230, 1–14. DOI: 10.1007/s11270-019-4166-1.
  • Zeng, S. J.; Zhong, D. J.; Xu, Y. L.; Zhong, N. B. Biochar-Loaded nZVI/Ni Bimetallic Particles for Hexavalent Chromium Removal from Aqueous Solution. J. Dispersion Sci. Technol. 2022, 1–12. DOI: 10.1080/01932691.2022.2052310.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.