52
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Monodispersed calcium oxalate as highly effective support filler in PMMA-based nanocomposite

, , , , &
Pages 1894-1907 | Received 16 Feb 2023, Accepted 01 Jul 2023, Published online: 15 Jul 2023

References

  • Díez-Pascual, A. M. PMMA-Based Nanocomposites for Odontology Applications: A State-of-the-Art. Int. J. Mol. Sci. 2022, 23, 1–19.
  • Hacker, M. C.; Krieghoff, J.; Mikos, A. G. Synthetic Polymers. Principles of Regenerative Medicine; Elsevier: Amsterdam, 2019; pp 559–590.
  • Hassan, M.; Asghar, M.; Din, S. U.; Zafar, M. S. Thermoset Polymethacrylate-Based Materials for Dental Applications. In Materials for Biomedical Engineering; Elsevier: Amsterdam, 2019, pp 273–308.
  • Liu, J.; Ge, Y. M.; Xu, L. Study of Antibacterial Effect of Polymethyl Methacrylate Resin Base Containing Ag-TiO2 against Streptococcus mutans and Saccharomyces albicans In Vitro. West China J. Stomatol. 2012, 30, 201–205.
  • Oleiwi, J.; Hamad, Q.; Kadhim, N. Study Compression, Hardness and Density Properties of PMMA Reinforced by Natural Powder Used in Denture Base Applications. Eng. Technol. J. 2019, 37, 522–527. DOI: 10.30684/etj.37.12A.5.
  • Chang, M.; Hung, C.; Chen, W.; Tseng, S.; Chen, Y.; Wang, J. Effects of Pontic Span and Fiber Reinforcement on Fracture Strength of Multi-Unit Provisional Fixed Partial Dentures. J. Dent. Sci. 2019, 14, 309–317. DOI: 10.1016/j.jds.2018.11.008.
  • Al-Thobity, A. M. The Impact of Polymerization Technique and Glass-Fiber Reinforcement on the Flexural Properties of Denture Base Resin Material. Eur. J. Dent. 2020, 14, 92–99. DOI: 10.1055/s-0040-1701922.
  • Aldabib, J. M; Ishak, Z. A. M. Effect of Hydroxyapatite Filler Concentration on Mechanical Properties of Poly (Methyl Methacrylate) Denture Base. SN Appl. Sci. 2020, 2, 732. DOI: 10.1007/s42452-020-2546-1.
  • Hamedi-Rad, F.; Ghaffari, T.; Rezaii, F.; Ramazani, A. Effect of Nanosilver on Thermal and Mechanical Properties of Acrylic Base Complete Dentures. J. Dent. 2014, 11, 495–505.
  • De Souza Leão, R.; de Moraes, S. L. D.; de Luna Gomes, J. M.; Lemos, C. A. A.; da Silva Casado, B. G.; do Egito Vasconcelos, B. C.; Pellizzer, E. P. Influence of Addition of Zirconia on PMMA: A Systematic Review. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 106, 110292. DOI: 10.1016/j.msec.2019.110292.
  • Zidan, S.; Silikas, N.; Haider, J.; Alhotan, A.; Jahantigh, J.; Yates, J. Evaluation of Equivalent Flexural Strength for Complete Removable Dentures Made of Zirconia-Impregnated PMMA Nanocomposites. Materials 2020, 13, 2580. DOI: 10.3390/ma13112580.
  • Wang, R.; Tao, J.; Yu, B.; Dai, L. Characterization of Multiwalled Carbon Nanotube-Polymethyl Methacrylate Composite Resins as Denture Base Materials. J. Prosthet. Dent. 2014, 111, 318–326. DOI: 10.1016/j.prosdent.2013.07.017.
  • Morsy, M.; Mohammed, A.-D. Gold nanoparticles-PMMA Composite for Denture Base: Synthesis, Mechanical and Thermal Characteristics. Mater. Sci. 2014, 14, 369–374.
  • Akhtar, K.; Cynthia, P.; Naila, Z.; Hina, K. Calcium Hydroxyapatite Nanoparticles as a Reinforcement Filler in Dental Resin Nanocomposite. J. Mater. Sci. Mater. Med. 2021, 32, 129. DOI: 10.1007/s10856-021-06599-3.
  • Stober, T.; Lutz, T.; Gilde, H.; Rammelsberg, P. Wear of Resin Denture Teeth by Two-Body Contact. Dent. Mater. 2006, 22, 243–249. DOI: 10.1016/j.dental.2005.03.009.
  • Salih, S. I.; Oleiwi, J. K.; Mohamed, A. S. Investigation of Mechanical Properties of PMMA Composite Reinforced with Different Types of Natural Powders. J. Eng. Appl. Sci. 2018, 13, 8889–8900.
  • Alamgir, M.; Mallick, A.; Nayak, G. C.; Tiwari, S. K. Development of PMMA/TiO2 Nanocomposites as Excellent Dental Materials. J. Mech. Sci. Technol. 2019, 33, 4755–4760. DOI: 10.1007/s12206-019-0916-7.
  • Farhan, F. K.; Kadhim, B. B.; Ablawa, B. D.; Shakir, W. A. Wear and Friction Characteristics of TiO2–ZnO/PMMA Nanocomposites. J. Eng. Res. Sci. 2017, 2, 6–9. DOI: 10.24018/ejers.2017.2.4.287.
  • Akinci, A.; Sen, S.; Sen, U. Friction and Wear Behavior of Zirconium Oxide Reinforced PMMA Composites. Compos. Eng. 2014, 56, 42–47. DOI: 10.1016/j.compositesb.2013.08.015.
  • Gad, M. M. A.; Abualsaud, R.; Al-Thobity, A. M.; Almaskin, D. F.; AlZaher, Z. A.; Abushowmi, T. H.; Qaw, M. S.; Akhtar, S.; Al-Harbi, F. A. Effect of SiO2 Nanoparticles Addition on the Flexural Strength of Repaired Acrylic Denture Base. Eur. J. Dent. 2020, 14, 19–23. DOI: 10.1055/s-0039-1701076.
  • Flores, J. C.; Garcia, R.; Villanueva, G.; Acosta-Torres, L. Antimicrobial Poly (Methyl Methacrylate) with Silver Nanoparticles for Dentistry: A Systematic Review. Appl. Sci. 2020, 10, 4007.
  • Bacali, C.; Badea, M.; Moldovan, M.; Sarosi, C.; Nastase, V.; Baldea, I.; Chiorean, R. S.; Constantiniuc, M. The Influence of Graphene in Improvement of Physico-Mechanical Properties in PMMA Denture Base Resins. Materials 2019, 12, 2335. DOI: 10.3390/ma12142335.
  • Munarin, F.; Petrini, P.; Gentilini, R.; Pillai, R. S.; Dirè, S.; Tanzi, M. C.; Sglavo, V. M. Micro- and Nano-Hydroxyapatite as Active Reinforcement for Soft Biocomposites. Int. J. Biol. Macromol. 2015, 72, 199–209. DOI: 10.1016/j.ijbiomac.2014.07.050.
  • Dorozhkin, S. V. Calcium Orthophosphates (CaPO4): Occurrence and Properties. Prog. Biomater. 2016, 5, 9–70. DOI: 10.1007/s40204-015-0045-z.
  • Nikolaev, A. L.; Gopin, A. V.; Severin, A. V.; Rudin, V. N.; Mironov, M. A.; Dezhkunov, N. V. Ultrasonic Synthesis of Hydroxyapatite in Non-cavitation and Cavitation Modes. Ultrason. Sonochem. 2018, 44, 390–397. DOI: 10.1016/j.ultsonch.2018.02.047.
  • Mansour, S. F.; El-Dek, S. I.; Ahmed, M. K. Physico-Mechanical and Morphological Features of Zirconia Substituted Hydroxyapatite Nanocrystals. Sci. Rep. 2017, 7, 43202–43223. DOI: 10.1038/srep43202.
  • Kong, D.; Xiao, X.; Qiu, X.; Zhang, W.; Hu, Y.; Zhang, S.; Yang, Y. Synthesis and Characterization of Europium Ions Doping of Hydroxyapatite Nanorods by the Simple Two-Step Method. Funct. Mater. Lett. 2015, 8, 1550075. DOI: 10.1142/S1793604715500757.
  • Deb, S.; Aiyathurai, L.; Roether, J. A.; Luklinska, Z. B. Development of High-Viscosity, Two-Paste Bioactive Bone Cements. Biomater 2005, 26, 3713–3718. DOI: 10.1016/j.biomaterials.2004.09.065.
  • Zhang, H.; Darvell, B. W. Synthesis and Characterization of Hydroxyapatite Whiskers by Hydrothermal Homogeneous Precipitation Using Acetamide. Acta Biomater. 2010, 6, 3216–3222. DOI: 10.1016/j.actbio.2010.02.011.
  • Koutsopoulos, S. Synthesis and Characterization of Hydroxyapatite Crystals: A Review Study on the Analytical Methods. J. Biomed. Mater. Res. 2002, 62, 600–612. DOI: 10.1002/jbm.10280.
  • Li, B.; Liu, Z.; Yang, J.; Yi, Z.; Xiao, W.; Liu, X.; Yang, X.; Xu, W.; Liao, X. Preparation of Bioactive β-Tricalcium Phosphate Microspheres as Bone Graft Substitute Materials. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 70, 1200–1205. DOI: 10.1016/j.msec.2016.03.040.
  • Kalita, S. J.; Verma, S. Nanocrystalline Hydroxyapatite Bioceramic Using Microwave Radiation: Synthesis and Characterization. Mater. Sci. Eng. C Mater. Biol. Appl. 2010, 30, 295–303. DOI: 10.1016/j.msec.2009.11.007.
  • Utara, S.; Klinkaewnarong, J. Sonochemical Synthesis of Nano-Hydroxyapatite Using Natural Rubber Latex as a Templating Agent. Ceram. Int. 2015, 41, 14860–14867. DOI: 10.1016/j.ceramint.2015.08.018.
  • Jokic, B.; Mitric, M.; Radmilovic, V.; Drmanic, S.; Petrovic, R.; Janackovic, D. Synthesis and Characterization of Monetite and Hydroxyapatite Whiskers Obtained by a Hydrothermal Method. Ceram. Int. 2011, 37, 167–173. DOI: 10.1016/j.ceramint.2010.08.032.
  • Zhang, L.; Zhao, J.; Lu, H.; Gong, L.; Li, L.; Zheng, J.; Li, H.; Zhu, Z. High Sensitive and Selective Formaldehyde Sensors Based on Nanoparticle-Assembled ZnO Micro-Octahedrons Synthesized by Homogeneous Precipitation Method. Sens. Actuators B Chem. 2011, 160, 364–370. DOI: 10.1016/j.snb.2011.07.062.
  • Vachiramon, V.; Vargas, M. A.; Pashley, D. H.; Tay, F. R.; Geraldeli, S.; Qian, F.; Armstrong, S. R. Effects of Oxalate on Dentin Bond after 3-Month Simulated Pulpal Pressure. J. Dent. 2008, 36, 178–185. DOI: 10.1016/j.jdent.2007.11.011.
  • Akhtar, K.; Shahana, A.; Hina, K.; Naila, Z.; Sajjad, A. S. Monodispersed Fine Particles of Calcium Oxalate: Morphological Dynamics with Tuning of the Experimental Parameters. J. Dispers. Sci. Technol. 2023, DOI: 10.1080/01932691.2023.2176868.
  • Akhtar, K.; Haq, I. U. Chemical Modulation of Crystalline State of Calcium Oxalate with Nickel Ions. Clin. Chim. Acta 2013, 418, 12–16. DOI: 10.1016/j.cca.2012.12.027.
  • Nirmaladevi, M.; Sanjiv Raj, K.; Subramanian, V. Effect of Diethylene-Triaminepentaacetic Acid (DTPA) on Crystal Growth and Morphology of Calcium Oxalate. Nephrol. Open J. 2017, 3, 1–8. DOI: 10.17140/NPOJ-3-116.
  • Vijaya, P.; Gopi, S.; Wani, A. H.; Rajasekharan, M. V.; Subramanian, V. K. Effect of Ethylenediaminetetraacetic Acid (Di Sodium Salt) and Aqua Soft 330 on Crystal Growth and Morphology of Calcium Oxalate. Adv. Powder Technol. 2012, 23, 771–778. DOI: 10.1016/j.apt.2011.10.006.
  • Dai, W.; Kheireddin, B.; Gao, H.; Liang, H. Roles of Nanoparticles in Oil Lubrication. Tribol. Int. 2016, 102, 88–98. DOI: 10.1016/j.triboint.2016.05.020.
  • Zheng, J.; Zhou, Z. Effect of Age on the Friction and Wear Behaviors of Human Teeth. Tribol. Int. 2006, 39, 266–273. DOI: 10.1016/j.triboint.2004.09.004.
  • Hao, L.; Yang, H.; Zhao, N.; Du, C.; Wang, Y. Controlled Growth of Hydroxyapatite Fibers Precipitated by Propionamide through Hydrothermal Synthesis. Powder Technol. 2014, 253, 172–177. DOI: 10.1016/j.powtec.2013.11.020.
  • Zhang, J.; Kaur, J.; Rajkhowa, R.; Li, J. L.; Liu, X. Y.; Wang, X. G. Mechanical Properties and Structure of Silkworm Cocoons: A Comparative Study of Bombyx mori, Antheraea assamensis, Antheraea pernyi and Antheraea mylitta Silkworm Cocoons. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 3206–3213. DOI: 10.1016/j.msec.2013.03.051.
  • Dong, B.; Wang, C.; He, B. L.; Li, H. L. Preparation and Tribological Properties of Poly (Methyl Methacrylate)/Styrene/MWNTs Copolymer Nanocomposites. J. Appl. Polym. Sci. 2008, 108, 1675–1679. DOI: 10.1002/app.27820.
  • Zheng, J.; Zhou, Z. Friction and Wear Behavior of Human Teeth under Various Wear Conditions. Tribol. Int. 2007, 40, 278–284. DOI: 10.1016/j.triboint.2005.09.025.
  • Akhtar, K.; Khalid, H.; Ul Haq, I.; Malik, A. Improvement in Tribological Properties of Lubricating Grease with Quartz-Enriched Rice Husk Ash. Tribol. Int. 2016, 93, 58–62. DOI: 10.1016/j.triboint.2015.09.015.
  • Pan, Y.; Liu, F.; Xu, D.; Jiang, X.; Yu, H.; Zhu, M. Novel Acrylic Resin Denture Base with Enhanced Mechanical Properties by the Incorporation of PMMA-Modified Hydroxyapatite. Prog. Nat. Sci. Mater. Int. 2013, 23, 89–93. DOI: 10.1016/j.pnsc.2013.01.016.
  • Conti, C.; Casati, M.; Colombo, C.; Realini, M.; Brambilla, L.; Zerbi, G. Phase Transformation of Calcium Oxalate Dihydrate–Monohydrate: Effects of Relative Humidity and New Spectroscopic Data. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 128, 413–419. DOI: 10.1016/j.saa.2014.02.182.
  • Navarro, C. H.; Moreno, K. J.; Chavez-Valdez, A.; Louvier-Hernandez, F.; Garcia-Miranda, J. S.; Lesso, R. Friction and Wear Properties of Poly (Methyl Methacrylate)–Hydroxyapatite Hybrid Coating on UHMWPE Substrates. Wear 2012, 282, 76–80.
  • Verma, N. P.; Sinha, A. Effect of Solid to Liquid Ratio on the Physical Properties of Injectable Nanohydroxyapatite. J. Mater. Sci. 2013, 24, 53–59.
  • Hiljanen-Vainio, M.; Heino, M.; Seppälä, J. V. Reinforcement of Biodegradable Poly (Ester-Urethane) with Fillers. Polymer 1998, 39, 865–872. DOI: 10.1016/S0032-3861(97)00345-5.
  • Spear, J. C.; Ewers, B. W.; Batteas, J. D. 2D-Nanomaterials for Controlling Friction and Wear at Interfaces. Nano Today 2015, 10, 301–314. DOI: 10.1016/j.nantod.2015.04.003.
  • Nabhan, A.; Taha, M.; Ghazaly, N. M. Filler Loading Effect of Al2O3/TiO2 Nanoparticles on Physical and Mechanical Characteristics of Dental Base Composite (PMMA). Polym. Test. 2023, 117, 107848. DOI: 10.1016/j.polymertesting.2022.107848.
  • Rapoport, L.; Lvovsky, M.; Lapsker, I.; Leshchinsky, W.; Volovik, Y.; Feldman, Y.; Tenne, R. Friction and Wear of Bronze Powder Composites Including Fullerene-like WS2 Nanoparticles. Wear 2001, 249, 149–156. DOI: 10.1016/S0043-1648(01)00519-1.
  • Sadoun, A. M.; Fathy, A.; Abu-Oqail, A.; Elmetwaly, H. T.; Wagih, A. Structural, Mechanical and Tribological Properties of Cu–ZrO2/GNPs Hybrid Nanocomposites. Ceram. Int. 2020, 46, 7586–7594. DOI: 10.1016/j.ceramint.2019.11.258.
  • Li, H.; Zhou, Z. Wear Behaviour of Human Teeth in Dry and Artificial Saliva Conditions. Wear 2001, 249, 980–984. DOI: 10.1016/S0043-1648(01)00835-3.
  • Cheang, P.; Khor, K. Effect of Particulate Morphology on the Tensile Behaviour of Polymer–Hydroxyapatite Composites. Mater. Sci. Eng. 2003, 345, 47–54. DOI: 10.1016/S0921-5093(02)00284-8.
  • Arcís, R. W.; López-Macipe, A.; Toledano, M.; Osorio, E.; Rodríguez-Clemente, R.; Murtra, J.; Fanovich, M. A.; Pascual, C. D. Mechanical Properties of Visible Light-Cured Resins Reinforced with Hydroxyapatite for Dental Restoration. Dent. Mater. 2002, 18, 49–57. DOI: 10.1016/s0109-5641(01)00019-7.
  • Deb, P.; Lala, S. D.; Barua, E.; Deoghare, A. B. Physico-Mechanical and Biological Analysis of Composite Bone Scaffold Developed from Catla Fish Scale Derived Hydroxyapatite for Bone Tissue Engineering. Arab. J. Sci. Eng. 2023, 2023, 1–15.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.