43
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improvement in properties of mesoporous MCM-41 spheres using buffer solutions as additives under room temperature

&
Received 07 Jul 2022, Accepted 25 Aug 2023, Published online: 14 Sep 2023

References

  • Costa, J. A. S.; de Jesus, R. A.; Santos, D. O.; Mano, J. F.; Romão, L. P. C.; Paranhos, C. M. Recent Progresses in the Adsorption of Organic, Inorganic, and Gas Compounds by MCM-41-Based Mesoporous Materials. Microporous Mesoporous Mater. 2020, 291, 109698. DOI: 10.1016/j.micromeso.2019.109698.
  • Luo, X.; Guo, J.; Chang, P.; Qian, H.; Pei, F.; Wang, W.; Miao, K.; Guo, S.; Feng, G. ZSM-5@MCM-41 Composite Porous Materials with a Core-Shell Structure: Adjustment of Mesoporous Orientation Basing on Interfacial Electrostatic Interactions and Their Application in Selective Aromatics Transport. Sep. Purif. Technol. 2020, 239, 116516. DOI: 10.1016/j.seppur.2020.116516.
  • Li, Z.; He, Y.; Klausen, L. H.; Yan, N.; Liu, J.; Chen, F.; Song, W.; Dong, M.; Zhang, Y. Growing Vertical Aligned Mesoporous Silica Thin Film on Nanoporous Substrate for Enhanced Degradation, Drug Delivery and Bioactivity. Bioact. Mater. 2021, 6, 1452–1463. DOI: 10.1016/j.bioactmat.2020.10.026.
  • Singh, B.; Na, J.; Konarova, M.; Wakihara, T.; Yamauchi, Y.; Salomon, C.; Gawande, M. B. Functional Mesoporous Silica Nanomaterials for Catalysis and Environmental Applications. BCSJ 2020, 93, 1459–1496. DOI: 10.1246/bcsj.20200136.
  • Ryoo, R.; Park, I. S.; Jun, S.; Lee, C. W.; Kruk, M.; Jaroniec, M. Synthesis of Ordered and Disordered Silicas with Uniform Pores on the Border between Micropore and Mesopore Regions Using Short Double-Chain Surfactants. J. Am. Chem. Soc. 2001, 123, 1650–1657. DOI: 10.1021/ja0038326.
  • Cherevotan, A.; Ray, B.; Churipard, S. R.; Kaur, K.; Gautam, U. K.; Vinod, C. P.; Peter, S. C. Influence of Support Textural Property on CO2 to Methane Activity of Ni/SiO2 Catalysts. Appl. Catal. B 2022, 317, 121692. DOI: 10.1016/j.apcatb.2022.121692.
  • Gao, W.; Tang, X.; Yi, H.; Jiang, S.; Yu, Q.; Xie, X.; Zhuang, R. Mesoporous Molecular Sieve-Based Materials for Catalytic Oxidation of VOC: A Review. J. Environ. Sci. 2023, 125, 112–134. DOI: 10.1016/j.jes.2021.11.014.
  • Shah, B. A.; Patel, A. V.; Bagia, M. I.; Oluyinka, O. A. Removal of Cr(VI) from Aqueous Solutions Using EDCC-MCM-41: Isotherm, Kinetics and Thermodynamic Evaluation. J. Dispersion Sci. Technol. 2019, 40, 1827–1841. DOI: 10.1080/01932691.2018.1544081.
  • Wei, X.-N.; Wang, H.-L.; Li, Z.-D.; Huang, Z.-Q.; Qi, H.-P.; Jiang, W.-F. Fabrication of the Novel Core-Shell MCM-41@mTiO2 Composite Microspheres with Large Specific Surface Area for Enhanced Photocatalytic Degradation of Dinitro Butyl Phenol (DNBP). Appl. Surf. Sci. 2016, 372, 108–115. DOI: 10.1016/j.apsusc.2016.03.047.
  • Kachbouri, S.; Mnasri, N.; Elaloui, E.; Moussaoui, Y. Tuning Particle Morphology of Mesoporous Silica Nanoparticles for Adsorption of Dyes from Aqueous Solution. J. Saudi Chem. Soc. 2018, 22, 405–415. DOI: 10.1016/j.jscs.2017.08.005.
  • Chaudhuri, H.; Dash, S.; Sarkar, A. Adsorption of Different Dyes from Aqueous Solution Using Si-MCM-41 Having Very High Surface Area. J. Porous Mater. 2016, 23, 1227–1237. DOI: 10.1007/s10934-016-0181-4.
  • Hartlen, K. D.; Athanasopoulos, A. P. T.; Kitaev, V. Facile Preparation of Highly Monodisperse Small Silica Spheres (15 to >200 nm) Suitable for Colloidal Templating and Formation of Ordered Arrays. Langmuir 2008, 24, 1714–1720. DOI: 10.1021/la7025285.
  • Wang, L.; Han, X.; Li, J.; Qin, L.; Zheng, D. Preparation of Modified Mesoporous MCM-41 Silica Spheres and Its Application in Pervaporation. Powder Technol. 2012, 231, 63–69. DOI: 10.1016/j.powtec.2012.07.044.
  • Wang, X.; Zhang, Y.; Luo, W.; Elzatahry, A. A.; Cheng, X.; Alghamdi, A.; Abdullah, A. M.; Deng, Y.; Zhao, D. Synthesis of Ordered Mesoporous Silica with Tunable Morphologies and Pore Sizes via a Nonpolar Solvent-Assisted Stöber Method. Chem. Mater. 2016, 28, 2356–2362. DOI: 10.1021/acs.chemmater.6b00499.
  • Gao, Y.; Gao, D.; Shen, J.; Wang, Q. A Review of Mesoporous Silica Nanoparticle Delivery Systems in Chemo-Based Combination Cancer Therapies. Front. Chem. 2020, 8, 598722. DOI: 10.3389/fchem.2020.598722.
  • Wang, H.; Van Der Voort, P.; Qu, H.; Liu, S. A Simple Room-Temperature Synthesis of Mesoporous Silica Rods with Tunable Size and Porosity. J. Nanopart. Res. 2013, 15 , 1501. DOI: 10.1007/s11051-013-1501-0.
  • Mathew, A.; Parambadath, S.; Park, S. S.; Ha, C.-S. Hydrophobically Modified Spherical MCM-41 as Nanovalve System for Controlled Drug Delivery. Microporous Mesoporous Mater. 2014, 200, 124–131. DOI: 10.1016/j.micromeso.2014.08.033.
  • Teng, H. N.; Zhang, H.; Wang, J. J.; Zhang, K. L.; Chen, Y. Synthesis of Lamellar Mesoporous Silica Materials Using LCs as Templates. J. Dispersion Sci. Technol. 2017, 38, 1744–1748. DOI: 10.1080/01932691.2017.1279060.
  • Masalov, V. M.; Sukhinina, N. S.; Emel’chenko, G. A. Synthesis of Monodisperse Silica Nanoparticles via Heterogeneous Tetraethoxysilane Hydrolysis Using L-Arginine as a Catalyst. Inorg. Mater. 2018, 54, 156–162. DOI: 10.1134/S0020168518020103.
  • Cao, F.; Wu, Y.; Gu, J.; Wang, J. Hydrothermal Synthesis of Nanocrystalline Zeolite Beta by Acid-Catalyzed Hydrolysis of Teraethylorthosilicate. Mater. Chem. Phys. 2011, 130, 727–732. DOI: 10.1016/j.matchemphys.2011.07.053.
  • Wu, C. H.; Jeng, J. S.; Chia, J. L.; Ding, S. Multi-Nuclear Liquid State NMR Investigation of the Effects of pH and Addition of Polyethyleneglycol on the Long-Term Hydrolysis and Condensation of Tetraethoxysilane. J. Colloid Interface Sci. 2011, 353, 124–130. DOI: 10.1016/j.jcis.2010.09.024.
  • Huangfu, C.; Dong, Y.; Ji, X.; Wu, N.; Lu, X. Mechanistic Study of Protein Adsorption on Mesoporous TiO2 in Aqueous Buffer Solutions. Langmuir 2019, 35, 11037–11047. DOI: 10.1021/acs.langmuir.9b01354.
  • Loreto, S.; Cuypers, B.; Brokken, J.; Van Doorslaer, S.; De Wael, K.; Meynen, V. The Effect of the Buffer Solution on the Adsorption and Stability of Horse Heart Myoglobin on Commercial Mesoporous Titanium Dioxide: A Matter of the Right Choice. Phys. Chem. Chem. Phys. 2017, 19, 13503–13514. DOI: 10.1039/c6cp08585g.
  • Xin, H. C.; Tang, J. T.; Fan, F. T.; Yang, Q. H.; Li, C. Preparation of Fe-Substituted Mesoporous Silicas with Highly Isolated Iron Species in Buffer Solution. J. Inorg. Mater. 2009, 25, 107–112. DOI: 10.3724/SP.J.1077.2009.09455.
  • Tang, J.; Liu, J.; Yang, J.; Feng, Z.; Fan, F.; Yang, Q. Mesoporous Titanosilicates with High Loading of Titanium Synthesized in Mild Acidic Buffer Solution. J. Colloid Interface Sci. 2009, 335, 203–209. DOI: 10.1016/j.jcis.2009.03.090.
  • Fu, L.; Wang, Z.; Li, X.; Zhang, L. Surface Properties, Micellar Molecular Interaction, and Physical Properties for Binary Systems of Sodium Oleate with Three Anionic Surfactants. J. Dispersion Sci. Technol. 2017, 38, 712–720. DOI: 10.1080/01932691.2016.1192042.
  • Martinez, N. Y.; Moreno, M. S. Oil-in-Water Emulsion Development for the Encapsulation and Sustained Release of Xanthone. J. Dispersion Sci. Technol. 2020, 41, 355–361. DOI: 10.1080/01932691.2019.1578663.
  • Li, C-c.; Qiao, X-c.; Yu, J-g Large Surface Area MCM-41 Prepared from Acid Leaching Residue of Coal Gasification Slag. Mater. Lett. 2016, 167, 246–249. DOI: 10.1016/j.matlet.2015.12.125.
  • Xin, H.; Liu, J.; Fan, F.; Feng, Z.; Jia, G.; Yang, Q.; Li, C. Mesoporous Ferrosilicates with High Content of Isolated Iron Species Synthesized in Mild Buffer Solution and Their Catalytic Application. Microporous Mesoporous Mater. 2008, 113, 231–239. DOI: 10.1016/j.micromeso.2007.11.022.
  • Wang, J.; Zhang, W.; Suo, Y.; Wang, Y. Synthesis of Ni/H-Zr-MCM-48 and Their Isomerization Activity of n-Heptane. J. Porous Mater. 2018, 25, 1317–1324. DOI: 10.1007/s10934-017-0542-7.
  • Xiao, S.; Shoaib, A.; Xu, J.; Lin, D. Mesoporous Silica Size, Charge, and Hydrophobicity Affect the Loading and Releasing Performance of Lambda-Cyhalothrin. Sci. Total Environ. 2022, 831, 154914. DOI: 10.1016/j.scitotenv.2022.154914.
  • Liou, T. H.; Chen, G. W.; Yang, S. Preparation of Amino-Functionalized Mesoporous SBA-15 Nanoparticles and the Improved Adsorption of Tannic Acid in Wastewater. Nanomaterials 2022, 12, 791. DOI: 10.3390/nano12050791.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.