70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Detailed investigation of structural, elastic, and thermal properties of PANI doped silver ferrites AgFe2O3/ZnO

, , , , &
Received 08 Jun 2023, Accepted 15 Sep 2023, Published online: 06 Oct 2023

References

  • Shirsath, S. E.; Toksha, B. G.; Jadhav, K. M. Structural and Magnetic Properties of In3+ Substituted NiFe2O4. Mater. Chem. Phys. 2009, 117, 163–168. DOI: 10.1016/j.matchemphys.2009.05.027.
  • Valenzuela, R. Novel Applications of Ferrites. Phys. Res. Int. 2012, 2012, 1–9. DOI: 10.1155/2012/591839.
  • Narang, S. B.; Pubby, K. Nickel Spinel Ferrites: A Review. J. Magn. Magn. Mater. 2021, 519, 167163. DOI: 10.1016/j.jmmm.2020.167163.
  • Cullity, B. D.; Graham, C. D. Introduction to Magnetic Materials; John Wiley & Sons, 2011.
  • Dixit, G.; Singh, J.; Srivastava, R.; Agrawal, H.; Chaudhary, R. Structural, Magnetic and Optical Studies of Nickel Ferrite Thin Films. Adv. Mater. Lett. 2012, 3, 21–28. DOI: 10.5185/amlett.2011.6280.
  • Arshad, M. I.; Hasan, M. S.; Rehman, A. U.; Akhtar, M.; Tung, L. D.; Amin, N.; Mahmood, K.; Ali, A.; Trakoolwilaiwan, T.; Thanh, N. T. K. Structural, Optical, Electrical, Dielectric, Molecular Vibrational and Magnetic Properties of La3+ Doped Mg–Cd–Cu Ferrites Prepared by Co-Precipitation Technique. Ceram. Int. 2022, 48, 14246–14260. DOI: 10.1016/j.ceramint.2022.01.313.
  • Anand, J.; Palaniappan, S.; Sathyanarayana, D. Conducting Polyaniline Blends and Composites. Prog. Polym. Sci. 1998, 23, 993–1018. DOI: 10.1016/S0079-6700(97)00040-3.
  • Lu, X.; Ng, H. Y.; Xu, J.; He, C. Electrical Conductivity of Polyaniline–Dodecylbenzene Sulphonic Acid Complex: Thermal Degradation and Its Mechanism. Synth. Met. 2002, 128, 167–178. DOI: 10.1016/S0379-6779(01)00668-3.
  • Kan, J.; Pan, X.; Chen, C. Polyaniline–Uricase Biosensor Prepared with Template Process. Biosens. Bioelectron. 2004, 19, 1635–1640. DOI: 10.1016/j.bios.2003.12.032.
  • Mathew, R.; Yang, D.; Mattes, B. R.; Espe, M. P. Effect of Elevated Temperature on the Reactivity and Structure of Polyaniline. Macromolecules. 2002, 35, 7575–7581. DOI: 10.1021/ma020876l.
  • Gupta, K.; Jana, P.; Meikap, A. Electrical Transport and Optical Properties of the Composite of Polyaniline Nanorod with Gold. Solid State Sci. 2012, 14, 324–329. DOI: 10.1016/j.solidstatesciences.2011.12.003.
  • Khairy, M.; Gouda, M. Electrical and Optical Properties of Nickel Ferrite/Polyaniline Nanocomposite. J. Adv. Res. 2015, 6, 555–562. DOI: 10.1016/j.jare.2014.01.009.
  • Shabzendedar, S.; Modarresi-Alam, A. R.; Noroozifar, M.; Kerman, K. Core-Shell Nanocomposite of Superparamagnetic Fe3O4 Nanoparticles with Poly (m-Aminobenzenesulfonic Acid) for Polymer Solar Cells. Org. Electron. 2020, 77, 105462. DOI: 10.1016/j.orgel.2019.105462.
  • S, H.; Sambhudevan, S. Ferrite-Based Polymer Nanocomposites as Shielding Materials: A Review. Chem. Pap. 2021, 75, 3697–3710. DOI: 10.1007/s11696-021-01664-1.
  • Reddy, K. R.; Jeong, H. M.; Lee, Y.; Raghu, A. V. Synthesis of MWCNTs‐Core/Thiophene Polymer‐Sheath Composite Nanocables by a Cationic Surfactant‐Assisted Chemical Oxidative Polymerization and Their Structural Properties. J. Polym. Sci. A Polym. Chem. 2010, 48, 1477–1484. DOI: 10.1002/pola.23883.
  • Reddy, K. R.; Sin, B. C.; Ryu, K. S.; Kim, J.-C.; Chung, H.; Lee, Y. Conducting Polymer Functionalized Multi-Walled Carbon Nanotubes with Noble Metal Nanoparticles: Synthesis, Morphological Characteristics and Electrical Properties. Synth. Met. 2009, 159, 595–603. DOI: 10.1016/j.synthmet.2008.11.030.
  • Reddy, K. R.; Sin, B. C.; Yoo, C. H.; Sohn, D.; Lee, Y. Coating of Multiwalled Carbon Nanotubes with Polymer Nanospheres through Microemulsion Polymerization. J. Colloid Interf. Sci. 2009, 340, 160–165. DOI: 10.1016/j.jcis.2009.08.044.
  • Reddy, K. R.; Lee, K. P.; Gopalan, A. I.; Kim, M. S.; Showkat, A. M.; Nho, Y. C. Synthesis of Metal (Fe or Pd)/Alloy (Fe–Pd)‐Nanoparticles‐Embedded Multiwall Carbon Nanotube/Sulfonated Polyaniline Composites by γ Irradiation. J. Polym. Sci. A Polym. Chem. 2006, 44, 3355–3364. DOI: 10.1002/pola.21451.
  • Patil, V. G.; Shirsath, S. E.; More, S. D.; Shukla, S. J.; Jadhav, K. M. Effect of Zinc Substitution on Structural and Elastic Properties of Cobalt Ferrite. J. Alloys Compd. 2009, 488, 199–203. DOI: 10.1016/j.jallcom.2009.08.078.
  • Ma Hakim, D. S.; FazleKibria-Bang, A. K. M. Synthesis and Temperature Dependent Structural Study of Nanocrystalline Mg-Ferrite Materials. Physics. 2020, 3, 57.
  • Zahi, S.; Hashim, M.; Daud, A. R. Synthesis, Magnetic Properties and Microstructure of Ni–Zn Ferrite by Sol–Gel Technique. J. Magn. Magn. Mater. 2007, 308, 177–182. DOI: 10.1016/j.jmmm.2006.05.033.
  • Murthy, S. R.; Satyanarayana, R.; Seshagiri Rao, T. Elastic Moduli of Ni-Zn Ferrites at Low Temperatures. J. Mater. Sci. Lett. 1984, 3, 352–354. DOI: 10.1007/BF00729395.
  • Rajesh Babu, B.; Tatarchuk, T. Elastic Properties and Antistructural Modeling for Nickel-Zinc Ferrite-Aluminates. Mater. Chem. Phys. 2018, 207, 534–541. DOI: 10.1016/j.matchemphys.2017.12.084.
  • Vijaya Kumar, K.; Ravinder, D. Electrical Conductivity of Ni–Zn–Gd Ferrites. Mater. Lett. 2002, 52, 166–168. DOI: 10.1016/S0167-577X(01)00385-8.
  • Ravinder, D.; Vijaya Kumar, K.; Balaya, P. High-Frequency Dielectric Behaviour of Gadolinium Substituted Ni–Zn Ferrites. Mater. Lett. 2001, 48, 210–214. DOI: 10.1016/S0167-577X(00)00305-0.
  • Ravinder, D.; Ravi Kumar, B. A Study on Elastic Behaviour of Rare Earth Substituted Mn–Zn Ferrites. Mater. Lett. 2003, 57, 4471–4473. DOI: 10.1016/S0167-577X(03)00164-2.
  • Rasih, N. A.; Yahya, A. K. Effect of Ba-Site Substitution by Sr on Ultrasonic Velocity and Electron–Phonon Coupling Constant of DyBa2 − xSrxCu3O7 − δ Superconductors. J. Alloys Compd. 2009, 480, 777–781. DOI: 10.1016/j.jallcom.2009.02.055.
  • Srinivas Rao, S.; Ravinder, D. Composition Dependence of Elastic Moduli of Gadolinium-Substituted Nickel–Zinc Ferrites. Mater. Lett. 2003, 57, 3802–3804. DOI: 10.1016/S0167-577X(03)00088-0.
  • Kesavamoorthi, R.; Raja, C. R. Substitution Effects on Rare-Earth Ions-Doped Nickel-Zinc Ferrite Nanoparticles. J. Supercond. Nov. Magn. 2017, 30, 1207–1212. DOI: 10.1007/s10948-016-3904-5.
  • Chae, Y.; Min, S.; Park, E.; Lim, C.; Cheon, C.-H.; Jeong, K.; Kwak, K.; Cho, M. Real-Time Reaction Monitoring with in Operando Flow NMR and FTIR Spectroscopy: Reaction Mechanism of Benzoxazole Synthesis. Anal. Chem. 2021, 93, 2106–2113. DOI: 10.1021/acs.analchem.0c03852.
  • Pavia, D. L.; Lampman, G. M.; Kriz, G. S, JA Vyvyan Introduction to Spectroscopy. Nelson Education, 1999. http://nopr.niscpr.res.in/handle/123456789/27077
  • Ravinder, D. Far-Infrared Spectral Studies of Mixed Lithium–Zinc Ferrites. Mater. Lett. 1999, 40, 205–208. DOI: 10.1016/S0167-577X(99)00075-0.
  • Parmar, V. G. M.; Kunal, B.; Joshi, H. H. X-Ray, SEM, Far IR Characterization and Bulk Magnetic Properties of Zn2+ Substituted Copper Ferrite Synthesized by Co-Precipitation Technique. Indian J. Pure Appl. Phy. (IJPAP). 1999, 37, 207–214.
  • Djurišić, A. B.; Leung, Y. H.; Ching Ng, A. M. Strategies for Improving the Efficiency of Semiconductor Metal Oxide Photocatalysis. Mater. Horiz. 2014, 1, 400–410. DOI: 10.1039/c4mh00031e.
  • Król, A.; Pomastowski, P.; Rafińska, K.; Railean-Plugaru, V.; Buszewski, B. Zinc Oxide Nanoparticles: Synthesis, Antiseptic Activity and Toxicity Mechanism. Adv. Colloid Interf. Sci. 2017, 249, 37–52. DOI: 10.1016/j.cis.2017.07.033.
  • Cullity, B.; Stock, S. Elements of X-Ray Diffraction Third Edition Prentice Hall Upper Saddle River. NJ, 2001.
  • Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man Hong, S.; Koo, C. M.; Gogotsi, Y. Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes). Science. 2016, 353, 1137–1140. DOI: 10.1126/science.aag2421.
  • Blake, R.; Hessevick, R.; Zoltai, T.; Finger, L. W. Refinement of the Hematite Structure. Am. Mineralogist: J. Earth Planetary Mater. 1966, 51, 123–129.
  • Boultif, A.; Louër, D. Indexing of Powder Diffraction Patterns for Low-Symmetry Lattices by the Successive Dichotomy Method. J. Appl. Crystallogr. 1991, 24, 987–993. DOI: 10.1107/S0021889891006441.
  • Sinha, M.; Pradhan, S. K. Synthesis of Nanocrystalline Cd–Zn Ferrite by Ball Milling and Its Stability at Elevated Temperatures. Alloys Compounds. 2010, 489, 91–98. DOI: 10.1016/j.jallcom.2009.09.019.
  • Senol, S.; Ozturk, O.; Terzioğlu, C. Effect of Boron Doping on the Structural, Optical and Electrical Properties of ZnO Nanoparticles Produced by the Hydrothermal Method. Ceram. Int. 2015, 41, 11194–11201. DOI: 10.1016/j.ceramint.2015.05.069.
  • Baradaran, M.; Ghodsi, F. E. Highly Efficient Visible Photocatalytic Degradation of MB Organic Dye by Heteromorphic ZnO/AZO/ZnO Nanocatalysts: Effect of AZO Thickness. Sol-Gel Science and Technology. 2019. DOI: 10.1007/s10971-019-05081-5.
  • Xiaoliang, W.; S, D.; Yong, P.; Qin, X.; Yun, L. Study of the Photocatalytic Activity of Na and Al-Doped ZnO Powders. Ferroelectrics. 2013, 455, 90–96. DOI: 10.1080/00150193.2013.845068.
  • Kurmude, D. V.; Barkule, R. S.; Raut, A. V.; Shengule, D. R.; Jadhav, K. M. X-Ray Diffraction and Cation Distribution Studies in Zinc-Substituted Nickel Ferrite Nanoparticles. J. Supercond. Nov. Magn. 2014, 27, 547–553. DOI: 10.1007/s10948-013-2305-2.
  • Goldstein, J. I.; Newbury, D. E.; Michael, J. R.; Ritchie, N. W.; Scott, J. H. J.; Joy, D. C. Scanning Electron Microscopy and X-Ray Microanalysis. Springer, 2017.
  • Bharati, V. A.; S, S. B.; Humbe, A. V.; Murumkar, V. D.; Sondur, V. V.; Jadhav, K. M. Influence of Trivalent Al–Cr co-Substitution on the Structural, Morphological and Mössbauer Properties of Nickel Ferrite Nanoparticles. Alloys Compounds. 2020, 821, 153501. DOI: 10.1016/j.jallcom.2019.153501.
  • Barakat, M. M.; H, M. A.; Olofa, S. A.; Tawfik, A. Sintering Behaviour of the Spinel Ferrite System Ni0.65Zn0.35Fe2 − xCuxO4. J. Thermal Anal. 1991, 37, 241–248. DOI: 10.1007/BF02055926.
  • Muhammad, A.; Maqsood, A. Structural, Electrical and Magnetic Properties of Cu1-xZnxFe2O4 Ferrites (0 ≤ x ≤ 1). Alloys Compounds. 2008, 460, 54.
  • Hakim, M. A.; N, S. K.; Sikder, S. S.; Hanium Maria, K. Cation Distribution and Electromagnetic Properties of Spinel Type Ni–Cd Ferrites. Phys. Chem. Solid. 2013, 74, 1316–1321. DOI: 10.1016/j.jpcs.2013.04.011.
  • Hwang, S.-W.; Hyun, S.-H. Synthesis and Characterization of Tin Oxide/Carbon Aerogel Composite Electrodes for Electrochemical Supercapacitors. J. Power Sources. 2007, 172, 451–459. DOI: 10.1016/j.jpowsour.2007.07.061.
  • Kurian, M.; Kunjachan, C. Investigation of Size Dependency on Lattice Strain of Nanoceria Particles Synthesised by Wet Chemical Methods. Int. Nano Lett. 2014, 4, 73–80. DOI: 10.1007/s40089-014-0122-7.
  • Nikam, D. S.; Jadhav, S. V.; Khot, V. M.; Bohara, R.; Hong, C. K.; Mali, S. S.; Pawar, S. Cation Distribution, Structural, Morphological and Magnetic Properties of Co 1− x Zn x Fe 2 O 4 (x= 0–1) Nanoparticles. RSC Adv. 2015, 5, 2338–2345. DOI: 10.1039/C4RA08342C.
  • Hassan, S.; Ahmad, M.; Rehman, A. U.; Iqbal, M. W.; Shaukat, S. F.; Abd-Rabboh, H. S. Structural, Magnetic and Electrochemical Properties of Al-Substituted Ni Ferrites for Energy Storage Devices. Energy Storage. 2022, 55, 105320. DOI: 10.1016/j.est.2022.105320.
  • Kletetschka, G.; Kontny, A. Identification of Magnetic Minerals by Scanning Electron Microscope and Application of Ferrofluid. Stud. Geophys. Geod. 2005, 49, 153–162. DOI: 10.1007/s11200-005-0002-8.
  • Iqbal, J.; Numan, A.; Omaish Ansari, M.; Jafer, R.; Jagadish, P. R.; Bashir, S.; Hasan, P. M. Z.; Bilgrami, A. L.; Mohamad, S.; Ramesh, K.; Ramesh, S. Cobalt Oxide Nanograins and Silver Nanoparticles Decorated Fibrous Polyaniline Nanocomposite as Battery-Type Electrode for High Performance Supercapattery. Polymers (Basel). 2020, 12, 2816. DOI: 10.3390/polym12122816.
  • Vijayalakshmi, K.; Vanitha, K.; Revanasiddappa, M.; Raghavendra, S. Synthesis and Conductivity Study on Polyaniline/BaFe/Silver (PANI + BaFe + Ag) Nanocomposite with Plasma Treatment. Mater. Technol. 2016, 31, 1–6. DOI: 10.1179/1753555715Y.0000000070.
  • Bhosale, A. M. M.; Bhanage, B. Silver Nanoparticles: Synthesis, Characterization and Their Application as a Sustainable Catalyst for Organic Transformations. Curr. Org. Chem. 2015, 19, 708–727. DOI: 10.2174/1385272819666150207001154.
  • Rani, B. J.; R, M.; Saravana Kumar, B.; Ravi, G.; Ganesh, V.; Ravi Chandran, S.; Yuvak Kumar, R. Ferrimagnetism in Cobalt Ferrite (CoFe2O4) Nanoparticles. Nano-Struct. Nano-Objects 2018, 14, 84–91. DOI: 10.1016/j.nanoso.2018.01.012.
  • Surendra, D. M.; C, N. A.; Godipurge, S. S.; Yallappa, S. Synthesis and Functionalization of Silver Ferrite (AgFe2O3) Nanoparticles with l-Methionine: In Vivo Toxicity Studies against Drosophila melanogaster (Diptera: Drosophilidae). Results Chem. 2022, 4, 100565. DOI: 10.1016/j.rechem.2022.100565.
  • Griffiths, P. R. Fourier Transform Infrared Spectrometry. Science. 1983, 222, 297–302. DOI: 10.1126/science.6623077.
  • Waldron, R. D. Infrared Spectra of Ferrites. Phys. Rev. 1955, 99, 1727–1735. DOI: 10.1103/PhysRev.99.1727.
  • Moustafa, A. M.; S, L. M.; Salerno, M.; Abdel Latif, M. H. Symmetry in Magnetic and Vibrational Spectra of Multi-Element Spinel Ferrite. J. Magn. Magn. Mater. 2020, 513, 167267. DOI: 10.1016/j.jmmm.2020.167267.
  • Rajesh, D.; V.l, B.; Sunandana, C. S. Two-Step Synthesis and Characterization of ZnO Nanoparticles. Physica B. 2012, 407, 4537–4539. DOI: 10.1016/j.physb.2012.07.050.
  • Khan, I.; Khan, S.; Nongjai, R.; Ahmed, H.; Khan, W. Structural and Optical Properties of Gel-Combustion Synthesized Zr Doped ZnO Nanoparticles. Opt. Mater. 2013, 35, 1189–1193. DOI: 10.1016/j.optmat.2013.01.019.
  • Akhtar, M. N.; Khan, M. A.; Raza, M. R.; Ahmad, M.; Murtaza, G.; Raza, R.; Shaukat, S. F.; Asif, M. H.; Saleem, M.; Nazir, M. S. Structural, Morphological, Dielectric and Magnetic Characterizations of Ni0.6Cu0.2Zn0.2Fe2O4 (NCZF/MWCNTs/PVDF) Nanocomposites for Multilayer Chip Inductor (MLCI) Applications. Ceram. Int. 2014, 40, 15821–15829. DOI: 10.1016/j.ceramint.2014.07.109.
  • Akhtar, M. N.; Ali, K.; Umer, A.; Ahmad, T.; Khan, M. A. Structural Elucidation, and Morphological and Magnetic Behavior Evaluations, of Low-Temperature Sintered, Ce-Doped, Nanostructured Garnet Ferrites. Mater. Res. Bull. 2018, 101, 48–55. DOI: 10.1016/j.materresbull.2018.01.009.
  • Patange, S. M.; Shirsath, S. E.; Jadhav, S. P.; Hogade, V. S.; Kamble, S. R.; Jadhav, K. M. Elastic Properties of Nanocrystalline Aluminum Substituted Nickel Ferrites Prepared by co-Precipitation Method. J. Mol. Struct. 2013, 1038, 40–44. DOI: 10.1016/j.molstruc.2012.12.053.
  • Vijaya Kumar, K; Bhavani, S. D.; Shukur, M. A. The Study of Temperature Dependent Structural and Elastic Properties of Ni0.5Zn0.5Gd0.05Fe1.95O4 Ferrite Nanoparticles. Bulg. J. Phys. 2022, 49, 174–189.
  • Modi, K. B.; Shah, S. J.; Pujara, N. B.; Pathak, T. K.; Vasoya, N. H.; Jhala, I. G. Infrared Spectral Evolution, Elastic, Optical and Thermodynamic Properties Study on Mechanically Milled Ni0.5Zn0.5Fe2O4 Spinel Ferrite. J. Mol. Struct. 2013, 1049, 250–262. DOI: 10.1016/j.molstruc.2013.06.051.
  • Modi, K. B.; Gajera, J. D.; Pandya, M. P.; Vora, G.; Joshi, H. H. Far-Infrared Spectral Studies of Magnesium and Aluminum co-Substituted Lithium Ferrites. Pramana. J. Phys. 2004, 62, 1173–1180. DOI: 10.1007/BF02705264.
  • Kakani, S. L.; Hemrajani, C. Text Book of Solid State Physics. Sultan Chand & Sons: New Delhi, 2022.
  • Mazen, S. A.; Elsayed, H. M.; Abu-Elsaad, N. I. Effect of Divalent Metal Ions Substitution on Structural and Magnetic Properties of Li0.25Mn0.5-xMxFe2.25O4 (M = Co2+, Ni2+, Cu2+) Spinel Ferrites. Mater. Chem. Phys. 2020, 256, 123676. DOI: 10.1016/j.matchemphys.2020.123676.
  • Bhatu, S. S.; L, V. K.; Tanna, A. R.; Vasoya, N. H.; Buch, J. U.; Sharma, P. U.; Trivedi, U. N.; Joshi, H. H.; Modi, K. B. Effect of Nickel Substitution on Structural, Infrared and Elastic Properties of Lithium Ferrite. Indian J. Pure Appl. Phys. (IJPAP). 2007, 45, 596–608.
  • Mazen, S. A.; E, H. M.; Abu-Elsaad, N. I. A Comparative Study of Different Concentrations of (Co/Ni/Cu) Effects on Elastic Properties of Li–Mn Ferrite Employing IR Spectroscopy and Ultrasonic Measurement. Ceram. Int. 2021, 47, 26635–26642. DOI: 10.1016/j.ceramint.2021.06.071.
  • Patange, S. M.; S, S. E.; Lohar, K. S.; Algude, S. G.; Kamble, S. R.; Kulkarni, N.; Mane, D. R.; Jadhav, K. M. Infrared Spectral and Elastic Moduli Study of NiFe2 − xCrxO4 Nanocrystalline Ferrites. J. Magn. Magn. Mater. 2013, 325, 107–111. DOI: 10.1016/j.jmmm.2012.08.022.
  • Raj, B.; Rajendran, V.; Palanichamy, P. Science and Technology of Ultrasonics. Alpha Science Int’l Ltd.: India.
  • Burcham, W. E. Nuclear Physics in the United Kingdom 1911-1986. Rep. Prog. Phys. 1989, 52, 823–879. DOI: 10.1088/0034-4885/52/7/002.
  • Wooster, W. A. Physical Properties and Atomic Arrangements in Crystals. Rep. Prog. Phys. 1953, 16, 62–82. DOI: 10.1088/0034-4885/16/1/302.
  • Rehman, A. U.; Ahmad, M.; Hassan, S.; Hussain, S. Q.; Iqbal, M. W.; Ali, H. E. Ba Substituted SrFe2O4 (SrBa0.3Fe1.7O4) for the Removal of Fluoride Ions (F − 1) from the Drinking Water. Mater. Chem. Phys. 2023, 295, 127165. DOI: 10.1016/j.matchemphys.2022.127165.
  • Ravinder, D.; Alivelumanga, T. Composition Dependence of Elastic Behaviour of Mixed Manganese–Zinc Ferrites. Mater. Lett. 1998, 37, 51–56. DOI: 10.1016/S0167-577X(98)00062-7.
  • Wiley, D. E.; Manning, W. R.; Hunter, O. Jr. Elastic Properties of Polycrystalline TiB2, ZrB2 and HfB2 from Room Temperature to 1300°K. J. Less Common Metals. 1969, 18, 149–157. DOI: 10.1016/0022-5088(69)90134-9.
  • Duc, N. B.; Pham Thi, H. K. H.; Hanh, M.; Hai, T. T.; Tuyen, N. V.; Thi Ha, T. Investigation of Melting Point, Debye Frequency and Temperature of Iron at High Pressure. European Phys. J. B. 2020, 93, 1–7.
  • Patil, M.; Rendale, M.; Mathad, S.; Pujar, R. FTIR Spectra and Elastic Properties of Cd-Substituted Ni–Zn Ferrites. Int. J. Self-Propag. High-Temp. Synth. 2017, 26, 33–39. DOI: 10.3103/S1061386217010083.
  • Debnath, S.; Deb, K.; Saha, B.; Das, R. X-Ray Diffraction Analysis for the Determination of Elastic Properties of Zinc-Doped Manganese Spinel Ferrite Nanocrystals (Mn0. 75Zn0. 25Fe2O4), along with the Determination of Ionic Radii, Bond Lengths, and Hopping Lengths. J. Phys. Chem. Solids. 2019, 134, 105–114. DOI: 10.1016/j.jpcs.2019.05.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.