25
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Cytotoxicity and bioavailability assessment from thiamin-phospholipid complexation loaded Ajwain oil based self nanoemulsifying system

, &
Received 20 Jul 2023, Accepted 25 Sep 2023, Published online: 28 Oct 2023

References

  • Bhange, M.; Jadhav, A. Formulation and Development of Novel Matrix Dispersion System Based on Phospholipid Complex for Improving Oral Bioavailability of Ferulic Acid. IJDDT. 2022, 12, 1489–1495. DOI: 10.25258/ijddt.12.4.01.
  • Damnjanović, J.; Iwasaki, Y. Phospholipase D as a Catalyst: Application in Phospholipid Synthesis, Molecular Structure and Protein Engineering. J. Biosci. Bioeng. 2013, 116, 271–280. DOI: 10.1016/j.jbiosc.2013.03.008.
  • Jindal, A.; Kumar, A. Physical Characterization of Clove Oil Based Self Nano-emulsifying Formulations of Cefpodoxime Proxetil: Assessment of Dissolution Rate, Antioxidant & Antibacterial Activity. Open Nano. 2022, 8, 100087. DOI: 10.1016/j.onano.2022.100087.
  • Smithline, H. A.; Donnino, M.; Greenblatt, D. J. Pharmacokinetics of High-Dose Oral Thiamine Hydrochloride in Healthy Subjects. BMC Clin. Pharmacol. 2012, 12, 0–4. DOI: 10.1186/1472-6904-12-4.
  • Dudeja, P. K.; Tyagi, S.; Gill, R.; Said, H. M. Evidence for a Carrier-Mediated Mechanism for Thiamine Transport to Human Jejunal Basolateral Membrane Vesicles. Dig. Dis. Sci. 2003, 48, 109–115. DOI: 10.1023/a:1021794600864.
  • Clase, C. M.; Ki, V.; Holden, R. M. Water-Soluble Vitamins in People with Low Glomerular Filtration Rate or on Dialysis: A Review. Semin. Dial. 2013, 26, 546–567. DOI: 10.1111/sdi.12099.
  • Dudeja, P. K.; Tyagi, S.; Kavilaveettil, R. J.; Gill, R.; Said, H. M. Mechanism of Thiamine Uptake by Human Jejunal Brush-Border Membrane Vesicles. Am. J. Physiol. Cell Physiol. 2001, 281, C786–C792. DOI: 10.1152/ajpcell.2001.281.3.C786.
  • Laforenza, U.; Orsenigo, M. N.; Rindi, G. A Thiamine/H + Antiport Mechanism for Thiamine Entry into Brush Border Membrane Vesicles from Rat Small Intestine. J. Membr. Biol. 1998, 161, 151–161. DOI: 10.1007/s002329900322.
  • Shirasaka, Y.; Seki, M.; Hatakeyama, M.; Kurokawa, Y.; Uchiyama, H.; Takemura, M.; Yasugi, Y.; Kishimoto, H.; Tamai, I.; Wang, J.; Inoue, K. Multiple Transport Mechanisms Involved in the Intestinal Absorption of Metformin: Impact on the Nonlinear Absorption Kinetics. J. Pharm. Sci. 2022, 111, 1531–1541. DOI: 10.1016/j.xphs.2022.01.008.
  • Juhász, Á.; Ungor, D.; Várkonyi, E. Z.; Varga, N.; Csapó, E. The ph-Dependent Controlled Release of Encapsulated Vitamin b1 from Liposomal Nanocarrier. Int. J. Mol. Sci. 2021, 22, 9851. DOI: 10.3390/ijms22189851.
  • Kumar, H.; Sharma, P. Unraveling the Micellization Behavior and Thermodynamic Characteristics of Imidazolium-Based Ionic Liquid in Presence of Vitamins Thiamine Hydrochloride and Ascorbic Acid. Colloids Surf, A 2021, 630, 127563. DOI: 10.1016/j.colsurfa.2021.127563.
  • Kaur, R.; Rani, A.; Banipal, P. K.; Banipal, T. S. Study on Interactions of Vitamin B1 with Sodium Dodecyl Sulfate for Potential Food Applications: Conductometric, Volumetric, Calorimetric and Spectroscopic Approach. J. Mol. Liq. 2019, 285, 616–625. DOI: 10.1016/j.molliq.2019.04.094.
  • Hsu, C.-Y.; Wang, P.-W.; Alalaiwe, A.; Lin, Z.-C.; Fang, J.-Y. Use of Lipid Nanocarriers to Improve Oral Delivery of Vitamins. Nutrients 2019, 11, 68. DOI: 10.3390/nu11010068.
  • Huang, Y.; Gibson, R. A.; Green, T. J. Measuring Thiamine Status in Dried Blood Spots. Clin. Chim. Acta. 2020, 509, 52–59. DOI: 10.1016/j.cca.2020.06.011.
  • Inchaurraga, L.; Martínez-López, A. L.; Cattoz, B.; Griffiths, P. C.; Wilcox, M.; Pearson, J. P., Quincoces, G.; Peñuelas, I.; Martin-Arbella, N.; Irache J. M. The Effect of Thiamine-Coating Nanoparticles on Their Biodistribution and Fate following Oral Administration. Eur. J. Pharm. Sci. 2019, 128, 81–90. DOI: 10.1016/j.ejps.2018.11.025.
  • Muthukrishnan, S.; Murugan, I.; Selvaraj, M. Chitosan Nanoparticles Loaded with Thiamine Stimulate Growth and Enhances Protection against Wilt Disease in Chickpea. Carbohydr. Polym. 2019, 212, 169–177. DOI: 10.1016/j.carbpol.2019.02.037.
  • Inchaurraga, L.; Martínez-López, A. L.; Abdulkarim, M.; Gumbleton, M.; Quincoces, G.; Peñuelas, I.; Martin-Arbella, N.; Irache, J. M. Modulation of the Fate of Zein Nanoparticles by Their Coating with a Gantrez® an-Thiamine Polymer Conjugate. Int. J. Pharm. X 2019, 1, 1(), 100006. DOI: 10.1016/j.ijpx.2019.100006.
  • Juveriya Fathima, S.; Fathima, I.; Abhishek, V.; Khanum, F. Phosphatidylcholine, an Edible Carrier for Nanoencapsulation of Unstable Thiamine. Food Chem. 2016, 197, (), 562–570. DOI: 10.1016/j.foodchem.2015.11.005.
  • Morsy, N. F. Production of Thymol Rich Extracts from Ajwain (Carum Copticum L.) and Thyme (Thymus Vulgaris L.) Using Supercritical CO2. Ind. Crops Prod. 2020, 145, 112072. DOI: 10.1016/j.indcrop.2019.112072.
  • Umar, S.; Asif, M.; Sajad, M.; Meraj, A.; Hussain, U.; Ahmad, W.; Siddiqui Ahmad, S.; Ahmad, S.; Khan, H. A. Anti-Inflammatory and Antioxidant Activity of Trachyspermum Ammi Seeds in Collagen Induced Arthritis in Rats. International Journal of Drug Development and Research 2012, 4, 0–0.
  • Azaraz, S.; Es‐haghi, A.; Neamati, A. Anti‐Angiogenic and Anticancer Activities of the Nanoemulsions Synthesized from Trachyspermum Ammi L. tincture against Human Colon Adenorectal Carcinoma Cells. Micro Nano Lett. 2022, 17, 139–147. DOI: 10.1049/mna2.12115.
  • Gaba, J.; Sharma, S.; Kaur, P.; Joshi, S. Essential Oil and Thymol Extracted from Ajwain as Effective Antioxidant Agents. J. Spices Aromatic Crop. 2019, 28.
  • Siyadatpanah, A.; Norouzi, R.; Mirzaei, F.; Haghirosadat, B. F.; Nissapatorn, V.; Mitsuwan, W.; Nawaz, M.; Pereira, M. L.; Hosseini, S. A.; Montazeri, M.; et al. Green Synthesis of Nano-liposomes Containing Bunium Persicum and Trachyspermum Ammi Essential Oils against Trichomonas vaginalis. Journal of Microbiology, Immunology and Infection 2023, 56, 150–162. DOI: 10.1016/j.jmii.2022.06.006.
  • Chatterjee, S.; Jain, A.; De, S. Effect of Different Operating Conditions in Cloud Point Assisted Extraction of Thymol from Ajwain (Trachyspermum Ammi L.) Seeds and Recovery Using Solvent. J. Food Sci. Technol. 2017, 54, 4353–4361. DOI: 10.1007/s13197-017-2906-z.
  • Zhao, Y. Q.; Wang, L. P.; Ma, C.; Zhao, K.; Liu, Y.; Feng, N. P. Preparation and Characterization of Tetrandrine-Phospholipid Complex Loaded Lipid Nanocapsules as Potential Oral Carriers. Int. J. Nanomedicine. 2013, 8, 4169–4181. DOI: 10.2147/IJN.S50557.
  • Ruan, J.; Liu, J.; Zhu, D.; Gong, T.; Yang, F.; Hao, X.; Zhang, Z. Preparation and Evaluation of Self-Nanoemulsified Drug Delivery Systems (SNEDDSs) of Matrine Based on Drug–Phospholipid Complex Technique. Int. J. Pharm. 2010, 386, 282–290. volumeIssDOI: 10.1016/j.ijpharm.2009.11.026.
  • Ge, L.; He, X.; Zhang, Y.; Zhang, Y.; Chai, F.; Jiang, L.; Webster, T. J.; Zheng, C. A Dabigatran Etexilate Phospholipid Complex Nanoemulsion System for Further Oral Bioavailability by Reducing Drug-Leakage in the Gastrointestinal Tract. Nanomedicine 2017, 30, 9634–9617. S1549301569. DOI: 10.1016/j.nano.2017.08.009.
  • Maiti, K.; Mukherjee, K.; Gantait, A.; Pada, B.; Saha, P.; Mukherjee, K. Curcumin–Phospholipid Complex: Preparation, Therapeutic Evaluation and Pharmacokinetic Study in Rats. Int. J. Pharm. 2007, 330, 155–163. DOI: 10.1016/j.ijpharm.2006.09.025.
  • Kalita, B.; Nath Patwary, B. Formulation and in Vitro Evaluation of Hesperidin-Phospholipid Complex and Its Antioxidant Potential. CDTH. 2020, 15, 28–36. DOI: 10.2174/1574885514666190226155933.
  • Ashhar, M. U.; Kumar, S.; Ali, J.; Baboota, S. CCRD Based Development of Bromocriptine and Glutathione Nanoemulsion Tailored Ultrasonically for the Combined Anti-Parkinson Effect. Chem. Phys. Lipids. 2021, 235, 105035. DOI: 10.1016/j.chemphyslip.2020.105035.
  • Aqil, M.; Kamran, M.; Ahad, A.; Imam, S. S. Development of Clove Oil Based Nanoemulsion of Olmesartan for Transdermal Delivery: Box–Behnken Design Optimization and Pharmacokinetic Evaluation. J. Mol. Liq. 2016, 214, 238–248. DOI: 10.1016/j.molliq.2015.12.077.
  • www.pharmacopeia.cn/v29240/usp29nf24s0_m82470.html.
  • Avachat, A. M.; Patel V. G. Self Nanoemulsifying Drug Delivery System of Stabilized Ellagic Acid–Phospholipid Complex with Improved Dissolution and Permeability. Saudi Pharm. J. 2015, 23, 276–289. ISSN 13190164. DOI: 10.1016/j.jsps.2014.11.001.
  • Nagaraju, P. G.; Sengupta, P.; Priyadarshini, P.; Chicgovinda, P.; Rao, J. Nanoencapsulation of Clove Oil and Study of Physicochemical Properties, Cytotoxic, Hemolytic, and Antioxidant Activities. J. Food Process Engineering 2021, 44, e13645. DOI: 10.1111/jfpe.13645.
  • Tashirova, O. A.; Ramenskaya, G. V.; Vlasov, A. M.; Khaitov, M. R. Development and Validation of an LC/MS Method for Quantitative Determination of Thiamine in Blood Plasma. Pharm. Chem. J. 2013, 46, 742–744. DOI: 10.1007/s11094-013-0883-8.
  • Buya, B.; Aristote  . Self-emulsifying systems for the oral delivery of anti-sickling agents [PhD diss]. UCL-Université Catholique de Louvain. 2021. https://dial.uclouvain.be/pr/boreal/object/boreal%3A255506/datastream/PDF_01/view.
  • Almajidi Yasser, Q.; Zainab, H. M.; Nidhal, K. M. Preparation and in Vitro Evaluation of Montelukast Sodium Oral Nanoemulsion. Int. J. App. Pharm. 2018, 10, 49–53. DOI: 10.22159/ijap.2018v10i5.28367.
  • Alghaith, A. F.; Alshehri, S.; Alhakamy, N. A.; Hosny, K. M. Development, Optimization and Characterization of Nanoemulsion Loaded with Clove Oil-Naftifine Antifungal for the Management of Tinea. Drug Deliv. 2021, 28, 343–356. DOI: 10.1080/10717544.2021.1879314.
  • Yuliani, S.; Noveriza, R. Effect of Carrier Oil and Co-solvent on the Formation of Clove Oil Nanoemulsion by Phase Inversion Technique. IOP Conf. Ser: Earth Environ. Sci. 2019, 309, 012036. DOI: 10.1088/1755-1315/309/1/012036.
  • Ahmed, S.; Gull, A.; Alam, M.; Aqil, M.; Sultana, Y. Ultrasonically Tailored, Chemically Engineered and “QbD” Enabled Fabrication of Agomelatine Nanoemulsion; Optimization, Characterization, Ex-vivo Permeation and Stability Study. Ultrason. Sonochem. 2018, 41, 213–226. DOI: 10.1016/j.ultsonch.2017.09.042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.