64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Centrifugally spun magnetic nanofibers for anionic dye removal: Optimization and predictive modeling with RSM and ANN

, &
Received 28 Jun 2023, Accepted 10 Oct 2023, Published online: 24 Oct 2023

References

  • Shindhal, T.; Rakholiya, P.; Varjani, S.; Pandey, A.; Ngo, H. H.; Guo, W.; Ng, H. Y.; Taherzadeh, M. J. A Critical Review on Advances in the Practices and Perspectives for the Treatment of Dye Industry Wastewater. Bioengineered 2021, 12, 70–87. DOI: 10.1080/21655979.2020.1863034.
  • Marszałek, J.; Żyłła, R. Recovery of Water from Textile Dyeing Using Membrane Filtration Processes. Processes 2021, 9, 1833. DOI: 10.3390/pr9101833.
  • Hassan, M. M.; Carr, C. M. A Critical Review on Recent Advancements of the Removal of Reactive Dyes from Dyehouse Effluent by Ion-Exchange Adsorbents. Chemosphere 2018, 209, 201–219. DOI: 10.1016/j.chemosphere.2018.06.043.
  • Atalay, S.; Ersöz, G. Hybrid Application of Advanced Oxidation Processes to Dyes’ Removal. In Green Chemistry and Water Remediation: Research and Applications; Elsevier: Amsterdam, 2020; pp 209–238. DOI: 10.1016/B978-0-12-817742-6.00007-4.
  • Adeola, A. O.; Abiodun, B. A.; Adenuga, D. O.; Nomngongo, P. N. Adsorptive and Photocatalytic Remediation of Hazardous Organic Chemical Pollutants in Aqueous Medium: A Review. J. Contam. Hydrol. 2022, 248, 104019. DOI: 10.1016/j.jconhyd.2022.104019.
  • Mohammed Redha, Z. Multi-Response Optimization of the Coagulation Process of Real Textile Wastewater Using a Natural Coagulant. Arab. J. Basic Appl. Sci. 2020, 27, 406–422. DOI: 10.1080/25765299.2020.1833509.
  • Tounsi, H.; Chaabane, T.; Omine, K.; Sivasankar, V.; Sano, H.; Hecini, M.; Darchen, A. Electrocoagulation in the Dual Application on the Simultaneous Removal of Fluoride and Nitrate Anions through Respective Adsorption/Reduction Processes and Modelling of Continuous Process. J. Water Process Eng. 2022, 46, 102584. DOI: 10.1016/j.jwpe.2022.102584.
  • Awad, F. S.; AbouZied, K. M.; Abou El-Maaty, W. M.; El-Wakil, A. M.; Samy El-Shall, M. Effective Removal of Mercury(II) from Aqueous Solutions by Chemically Modified Graphene Oxide Nanosheets. Arabian J. Chem. 2020, 13, 2659–2670. DOI: 10.1016/j.arabjc.2018.06.018.
  • Ali, A.; Shah, T.; Ullah, R.; Zhou, P.; Guo, M.; Ovais, M.; Tan, Z.; Rui, Y. K. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front. Chem. 2021, 9, 629054. DOI: 10.3389/fchem.2021.629054.
  • Rajabi, M.; Mahanpoor, K.; Moradi, O. Preparation of PMMA/GO and PMMA/GO-Fe 3 O 4 Nanocomposites for Malachite Green Dye Adsorption: Kinetic and Thermodynamic Studies. Compos B Eng. 2019, 167, 544–555. DOI: 10.1016/j.compositesb.2019.03.030.
  • Reghioua, A.; Barkat, D.; Jawad, A. H.; Abdulhameed, A. S.; Khan, M. R. Synthesis of Schiff’s Base Magnetic Crosslinked Chitosan-Glyoxal/ZnO/Fe3O4 Nanoparticles for Enhanced Adsorption of Organic Dye: Modeling and Mechanism Study. Sustain Chem. Pharm. 2021, 20, 20. DOI: 10.1016/j.scp.2021.100379.
  • Ganapathe, L. S.; Mohamed, M. A.; Yunus, R. M.; Berhanuddin, D. D. Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation. Magnetochemistry 2020, 6, 68. DOI: 10.3390/magnetochemistry6040068.
  • Xu, J. K.; Zhang, F. F.; Sun, J. J.; Sheng, J.; Wang, F.; Sun, M. Bio and Nanomaterials Based on Fe3O4. Molecules 2014, 19, 21506–21528. DOI: 10.3390/molecules191221506.
  • Roy, S. D.; Das, K. C.; Dhar, S. S. Conventional to Green Synthesis of Magnetic Iron Oxide Nanoparticles; Its Application as Catalyst, Photocatalyst and Toxicity: A Short Review. Inorg Chem. Commun. 2021, 134, 109050. DOI: 10.1016/j.inoche.2021.109050.
  • Ma, J.; Sun, S.; Chen, K. Facile and Scalable Synthesis of Magnetite/Carbon Adsorbents by Recycling Discarded Fruit Peels and Their Potential Usage in Water Treatment. Bioresour. Technol. 2017, 233, 110–115. DOI: 10.1016/j.biortech.2017.02.075.
  • Ali, A.; Zafar, H.; Zia, M.; Ul Haq, I.; Phull, A. R.; Ali, J. S.; Hussain, A. Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. DOI: 10.2147/NSA.S99986.
  • Freire, J. M. A.; Moreira, Í. O.; de M. França, A. M.; da Silva, L. T. V.; dos Santos, L. P. M.; dos Santos, S. L.; de Vasconcelos, I. F.; Loiola, A. R.; Antunes, R. A.; do Nascimento, R. F.; et al. Functionalized Magnetic Graphene Oxide Composites for Selective Toxic Metal Adsorption. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100843. DOI: 10.1016/j.enmm.2023.100843.
  • Algethami, F. K.; Al-Wasidi, A. S.; Al-Farraj, E. S.; Katouah, H. A.; Abdelrahman, E. A. Facile Synthesis and Characterization of Fe3O4/Analcime Nanocomposite for the Efficient Removal of Cu(II) and Cd(II) Ions from Aqueous Media. Discov. Nano 2023, 18, 70. DOI: 10.1186/s11671-023-03848-y.
  • Jjagwe, J.; Olupot, P. W.; Carrara, S. Iron Oxide Nanoparticles/Nanocomposites Derived from Steel and Iron Wastes for Water Treatment: A Review. J. Environ. Manage 2023, 343, 118236. DOI: 10.1016/j.jenvman.2023.118236.
  • HMTShirazi, R.; Mohammadi, T.; Asadi, A. A.; Tofighy, M. A. Electrospun Nanofiber Affinity Membranes for Water Treatment Applications: A Review. J. Water Process Eng. 2022, 47, 102795. DOI: 10.1016/j.jwpe.2022.102795.
  • Alghoraibi, I.; Alomari, S. Different Methods for Nanofiber Design and Fabrication. In Handbook of Nanofibers; Springer International Publishing: Cham, 2018; pp 1–46. DOI: 10.1007/978-3-319-42789-8_11-2.
  • Suzuki, A.; Ohta, K. Mechanical Properties of Poly(Ethylene Terephthalate) Nanofiber Three-Dimensional Structure Prepared by CO2 Laser Supersonic Drawing. J. Appl. Polymer Sci. 2018, 135, 45763. DOI: 10.1002/app.45763.
  • Meyer, B.; Croce, F. Materials | Nanofibers. In Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, 2009; pp 607–612. DOI: 10.1016/B978-044452745-5.00058-7.
  • Rolandi, M.; Rolandi, R. Self-Assembled Chitin Nanofibers and Applications. Adv. Colloid Interface Sci. 2014, 207, 216–222. DOI: 10.1016/j.cis.2014.01.019.
  • Jia, C.; Li, L.; Song, J.; Li, Z.; Wu, H. Mass Production of Ultrafine Fibers by a Versatile Solution Blow Spinning Method. Acc. Mater. Res. 2021, 2, 432–446. DOI: 10.1021/accountsmr.1c00040.
  • Chen, C.; Dirican, M.; Zhang, X. Centrifugal Spinning—High Rate Production of Nanofibers. In Electrospinning: Nanofabrication and Applications; Elsevier: Amsterdam, 2019; pp 321–338. DOI: 10.1016/B978-0-323-51270-1.00010-8.
  • Liu, Q.; Zheng, Y.; Zhong, L.; Cheng, X. Removal of Tetracycline from Aqueous Solution by a Fe3O4 Incorporated PAN Electrospun Nanofiber Mat. J. Environ. Sci. (China) 2015, 28, 29–36. DOI: 10.1016/j.jes.2014.04.016.
  • Savva, I.; Marinica, O.; Papatryfonos, C. A.; Vekas, L.; Krasia-Christoforou, T. Evaluation of Electrospun Polymer–Fe 3 O 4 Nanocomposite Mats in Malachite Green Adsorption. RSC Adv. 2015, 5, 16484–16496. DOI: 10.1039/C4RA16938G.
  • Patel, S.; Hota, G. Iron Oxide Nanoparticle-Immobilized PAN Nanofibers: Synthesis and Adsorption Studies. RSC Adv. 2016, 6, 15402–15414. DOI: 10.1039/C5RA20345G.
  • Wang, C.; Yu, S.; Cwiertny, D. M.; Yin, Y.; Myung, N. V. Phosphate Removal Using Surface Enriched Hematite and Tetra-n-Butylammonium Bromide Incorporated Polyacrylonitrile Composite Nanofibers. Sci. Total Environ. 2021, 770, 145364. DOI: 10.1016/j.scitotenv.2021.145364.
  • Li, D.; Gu, Y.; Xu, X.; Feng, Y.; Ma, Y.; Li, S.; Yao, C. Electrospun Polyacrylonitrile Fibers with and without Magnetic Nanoparticles for Selective and Efficient Separation of Glycoproteins. Mikrochim Acta 2019, 186, 542. DOI: 10.1007/s00604-019-3655-7.
  • Singh, A. K.; Bedi, R.; Kaith, B. S. Composite Materials Based on Recycled Polyethylene Terephthalate and Their Properties – a Comprehensive Review. Compos B Eng. 2021, 219, 108928. DOI: 10.1016/j.compositesb.2021.108928.
  • Karimifard, S.; Alavi Moghaddam, M. R. Application of Response Surface Methodology in Physicochemical Removal of Dyes from Wastewater: A Critical Review. Sci. Total. Environ. 2018, 640–641, 772–797. DOI: 10.1016/j.scitotenv.2018.05.355.
  • Park, Y. S.; Lek, S. Artificial Neural Networks: Multilayer Perceptron for Ecological Modeling. Dev. Environ. Model. 2016, 28, 123–140. DOI: 10.1016/B978-0-444-63623-2.00007-4.
  • Wang, S.; Di, J.; Wang, D.; Dai, X.; Hua, Y.; Gao, X.; Zheng, A.; Gao, J. State-of-the-Art Review of Artificial Neural Networks to Predict, Characterize and Optimize Pharmaceutical Formulation. Pharmaceutics 2022, 14, 183. DOI: 10.3390/pharmaceutics14010183.
  • El-Aswar, E. I.; Ramadan, H.; Elkik, H.; Taha, A. G. A Comprehensive Review on Preparation, Functionalization and Recent Applications of Nanofiber Membranes in Wastewater Treatment. J. Environ. Manage 2022, 301, 113908. DOI: 10.1016/j.jenvman.2021.113908.
  • Dehghanpour, H. R. The Effects of Surfactant Changing on Physical Properties of Fe3O4 Nanoparticles Produced in Coprecipitation Method. Russ. J. Inorg. Chem. 2020, 65, 1282–1286. DOI: 10.1134/S0036023620080033.
  • Yu, A.; Liu, Y.; Li, X.; Yang, Y.; Zhou, Z.; Liu, H. Modeling and Optimizing of NH4+ Removal from Stormwater by Coal-Based Granular Activated Carbon Using RSM and ANN Coupled with GA. Water (Switzerland) 2021, 13, 608. DOI: 10.3390/w13050608.
  • Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. DOI: 10.1016/j.talanta.2008.05.019.
  • Dahlan, I.; Ling, N. W. Adsorption of Acid Violet 7 (AV7) Dye Using RHA-CFA Adsorbent: Modeling, Process Analysis, and Optimization. Separat. Sci. Technol. (Philadelphia )2021, 56, 54–67. DOI: 10.1080/01496395.2019.1708115.
  • Hiew, B. Y. Z.; Lee, L. Y.; Lai, K. C.; Gan, S.; Thangalazhy-Gopakumar, S.; Pan, G. T.; Yang, T. C. K. Adsorptive Decontamination of Diclofenac by Three-Dimensional Graphene-Based Adsorbent: Response Surface Methodology, Adsorption Equilibrium, Kinetic and Thermodynamic Studies. Environ. Res. 2019, 168, 241–253. DOI: 10.1016/j.envres.2018.09.030.
  • Al-Yaari, M.; Aldhyani, T. H. H.; Rushd, S. Prediction of Arsenic Removal from Contaminated Water Using Artificial Neural Network Model. Appl. Sci. (Switzerland) 2022, 12, 999. DOI: 10.3390/app12030999.
  • Prakash Maran, J.; Sivakumar, V.; Thirugnanasambandham, K.; Sridhar, R. Artificial Neural Network and Response Surface Methodology Modeling in Mass Transfer Parameters Predictions during Osmotic Dehydration of Carica Papaya L. Alexand. Eng. J. 2013, 52, 507–516. DOI: 10.1016/j.aej.2013.06.007.
  • Sadiq, R.; Rodriguez, M. J. Empirical Models to Predict Disinfection By-Products (DBPs) in Drinking Water. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, 2011; pp 282–295. DOI: 10.1016/B978-0-444-52272-6.00282-8.
  • Hagan, M. T.; Menhaj, M. B. Training Feedforward Networks with the Marquardt Algorithm. IEEE Trans. Neural. Netw. 1994, 5, 989–993. DOI: 10.1109/72.329697.
  • Ticknor, J. L. A Bayesian Regularized Artificial Neural Network for Stock Market Forecasting. Expert. Syst. Appl. 2013, 40, 5501–5506. DOI: 10.1016/j.eswa.2013.04.013.
  • Tufaner, F.; Demirci, Y. Prediction of Biogas Production Rate from Anaerobic Hybrid Reactor by Artificial Neural Network and Nonlinear Regressions Models. Clean Techn. Environ. Policy 2020, 22, 713–724. DOI: 10.1007/s10098-020-01816-z.
  • Leon, V. B. d.; Negreiros, B. A. F. d.; Brusamarello, C. Z.; Petroli, G.; Di Domenico, M.; Souza, F. B. d Artificial Neural Network for Prediction of Color Adsorption from an Industrial Textile Effluent Using Modified Sugarcane Bagasse: Characterization, Kinetics and Isotherm Studies. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100387. DOI: 10.1016/j.enmm.2020.100387.
  • Agrawal, S.; Ingle, N.; Maity, U.; Jasra, R. V.; Munshi, P. Effect of Aqueous HCl with Dissolved Chlorine on Certain Corrosion-Resistant Polymers. ACS Omega 2018, 3, 6692–6702. DOI: 10.1021/acsomega.8b00515.
  • Sawisai, R.; Wanchanthuek, R.; Radchatawedchakoon, W.; Sakee, U. Simple Continuous Flow Synthesis of Linoleic and Palmitic Acid-Coated Magnetite Nanoparticles. Surf. Interfaces 2019, 17, 100344. DOI: 10.1016/j.surfin.2019.100344.
  • Abdulhameed, A. S.; Mohammad, A.-T.; Jawad, A. H. Application of Response Surface Methodology for Enhanced Synthesis of Chitosan Tripolyphosphate/TiO2 Nanocomposite and Adsorption of Reactive Orange 16 Dye. J. Clean. Prod. 2019, 232, 43–56. DOI: 10.1016/j.jclepro.2019.05.291.
  • Das, S.; Mishra, S. Box-Behnken Statistical Design to Optimize Preparation of Activated Carbon from Limonia Acidissima Shell with Desirability Approach. J. Environ. Chem. Eng. 2017, 5, 588–600. DOI: 10.1016/j.jece.2016.12.034.
  • Behera, S. K.; Meena, H.; Chakraborty, S.; Meikap, B. C. Application of Response Surface Methodology (RSM) for Optimization of Leaching Parameters for Ash Reduction from Low-Grade Coal. Int. J. Min. Sci. Technol. 2018, 28, 621–629. DOI: 10.1016/j.ijmst.2018.04.014.
  • Alam, P.; Noman, O. M.; Herqash, R. N.; Almarfadi, O. M.; Akhtar, A.; Alqahtani, A. S. Response Surface Methodology (RSM)-Based Optimization of Ultrasound-Assisted Extraction of Sennoside A, Sennoside B, Aloe-Emodin, Emodin, and Chrysophanol from Senna Alexandrina (Aerial Parts): HPLC-UV and Antioxidant Analysis. Molecules 2022, 27, 298. DOI: 10.3390/molecules27010298.
  • Iqbal, M. M. A.; Bakar, W. A. W. A.; Toemen, S.; Razak, F. I. A.; Azelee, N. I. W. Optimization Study by Box-Behnken Design (BBD) and Mechanistic Insight of CO2 Methanation over Ru-Fe-Ce/γ-Al2O3 Catalyst by in-Situ FTIR Technique. Arabian J. Chem. 2020, 13, 4170–4179. DOI: 10.1016/j.arabjc.2019.06.010.
  • Mousavi, S. A.; Mahmoudi, A.; Amiri, S.; Darvishi, P.; Noori, E. Methylene Blue Removal Using Grape Leaves Waste: Optimization and Modeling. Appl. Water Sci. 2022, 12, 112. DOI: 10.1007/s13201-022-01648-w.
  • Zango, Z. U.; Ramli, A.; Jumbri, K.; Sambudi, N. S.; Isiyaka, H. A.; Abu Bakar, N. H. H.; Saad, B. Optimization Studies and Artificial Neural Network Modeling for Pyrene Adsorption onto UiO-66(Zr) and NH2-UiO-66(Zr) Metal Organic Frameworks. Polyhedron 2020, 192, 114857. DOI: 10.1016/j.poly.2020.114857.
  • Singh, R.; Bhateria, R. Optimization and Experimental Design of the Pb2 + Adsorption Process on a Nano-Fe3O4-Based Adsorbent Using the Response Surface Methodology. ACS Omega 2020, 5, 28305–28318. DOI: 10.1021/acsomega.0c04284.
  • Igwegbe, C. A.; Mohmmadi, L.; Ahmadi, S.; Rahdar, A.; Khadkhodaiy, D.; Dehghani, R.; Rahdar, S. Modeling of Adsorption of Methylene Blue Dye on Ho-CaWO4 Nanoparticles Using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) Techniques. MethodsX 2019, 6, 1779–1797. DOI: 10.1016/j.mex.2019.07.016.
  • Mohammadzadeh Kakhki, R.; Mohammadpoor, M.; Faridi, R.; Bahadori, M. The Development of an Artificial Neural Network – Genetic Algorithm Model (ANN-GA) for the Adsorption and Photocatalysis of Methylene Blue on a Novel Sulfur–Nitrogen Co-Doped Fe 2 O 3 Nanostructure Surface. RSC Adv. 2020, 10, 5951–5960. DOI: 10.1039/C9RA10349J.
  • Al-Ghouti, M. A.; Da’ana, D. A. Guidelines for the Use and Interpretation of Adsorption Isotherm Models: A Review. J. Hazard Mater 2020, 393, 122383. DOI: 10.1016/j.jhazmat.2020.122383.
  • Rizk, S. E.; Hamed, M. M. Batch Sorption of Iron Complex Dye, Naphthol Green B, from Wastewater on Charcoal, Kaolinite, and Tafla. Desalination Water Treat. 2015, 56, 1536–1546. DOI: 10.1080/19443994.2014.954004.
  • Arivalagan, R. M. Modeling Studies for the Removal of Naphthol Green B from Aqueous Solution Using Albizia Saman Seed Shell Activated Carbon. Int. J. Innovat. Res. Sci. Technol. 2017, 4, 142–148.
  • Mohan, K.; Naga Babu, G. V.; Kalpana, A.; Ravindhranath, K. K. Removal of Naphthol Green B Dye from Polluted Waters Using Hydrogen Peroxide Treated Red Mud. Der. Pharma Chem. 2016, 8, 403–414.
  • Chen, Y.; Lin, Z.; Hao, R.; Xu, H.; Huang, C. Rapid Adsorption and Reductive Degradation of Naphthol Green B from Aqueous Solution by Polypyrrole/Attapulgite Composites Supported Nanoscale Zero-Valent Iron. J. Hazard Mater. 2019, 371, 8–17. DOI: 10.1016/j.jhazmat.2019.02.096.
  • Riahi-Madvaar, R.; Taher, M. A.; Fazelirad, H. Synthesis and Characterization of Magnetic Halloysite-Iron Oxide Nanocomposite and Its Application for Naphthol Green B Removal. Appl. Clay. Sci. 2017, 137, 101–106. DOI: 10.1016/j.clay.2016.12.019.
  • Largitte, L.; Pasquier, R. A Review of the Kinetics Adsorption Models and Their Application to the Adsorption of Lead by an Activated Carbon. Chem. Eng. Res. Des. 2016, 109, 495–504. DOI: 10.1016/j.cherd.2016.02.006.
  • Attallah, M. F.; Ahmed, I. M.; Hamed, M. M. Treatment of Industrial Wastewater Containing Congo Red and Naphthol Green B Using Low-Cost Adsorbent. Environ. Sci. Pollut. Res. Int. 2013, 20, 1106–1116. DOI: 10.1007/s11356-012-0947-4.
  • Rajeswari, M.; Arivalagan, K. Kinetic and Thermodynamic Studies on the Adsorption Behavior of Naphthol Green B Dye Using Casuarina Equisetifolia Bark Carbon. Scholars J. Eng. Technol. 2017, 5, 221–225. DOI: 10.21276/sjet.
  • Zhang, F.; Ni, Z.; Xia, S.; Liu, X.; Wang, Q. Removal of Naphthol Green B from Aqueous Solution by Calcined Layered Double Hydroxides: Adsorption Property and Mechanism Studies. Chin. J. Chem. 2009, 27, 1767–1772. DOI: 10.1002/cjoc.200990297.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.