110
Views
0
CrossRef citations to date
0
Altmetric
Research Article

3D printing technology in drug delivery: Polymer properties and applications

, , , &
Received 09 May 2023, Accepted 25 Nov 2023, Published online: 14 Dec 2023

References

  • Skjerning, H.; Mahony, R. O.; Husby, S.; DunnGalvin, A. Health-Related Quality of Life in Children and Adolescents with Celiac Disease: Patient-Driven Data from Focus Group Interviews. Qual. Life Res. 2014, 23, 1883–1894. DOI: 10.1007/s11136-014-0623-x.
  • Gruß, I.; McCreary, G. M.; Ivlev, I.; et al. Developing a Patient-Driven Chronic Obstructive Pulmonary Disease (COPD) Research Agenda in the US. J. Patient-Reported Outcomes 2021, 5, 1–9.
  • Buciuni, G.; Pisano, G. Variety of Innovation in Global Value Chains. J. World Bus. 2021, 56, 101167. DOI: 10.1016/j.jwb.2020.101167.
  • Ventola, C. L. Medical Applications for 3D Printing: Current and Projected Uses. Pharm. Ther. 2014, 39, 704.
  • Jamróz, W.; Szafraniec, J.; Kurek, M.; Jachowicz, R. 3D Printing in Pharmaceutical and Medical Applications–Recent Achievements and Challenges. Pharm. Res. 2018, 35, 176. DOI: 10.1007/s11095-018-2454-x.
  • Trenfield, S. J.; Awad, A.; Madla, C. M.; Hatton, G. B.; Firth, J.; Goyanes, A.; Gaisford, S.; Basit, A. W. Shaping the Future: Recent Advances of 3D Printing in Drug Delivery and Healthcare. Expert Opin. Drug Deliv. 2019, 16, 1081–1094. DOI: 10.1080/17425247.2019.1660318.
  • Flahou, C.; Morishima, T.; Takizawa, H.; Sugimoto, N. Fit-for-All iPSC-Derived Cell Therapies and Their Evaluation in Humanized Mice with NK Cell Immunity. Front. Immunol. 2021, 12, 662360. DOI: 10.3389/fimmu.2021.662360.
  • Attama, A. A.; Momoh, M. A.; Builders, P. F. Lipid Nanoparticulate Drug Delivery Systems: A Revolution in Dosage Form Design and Development. Recent Adv. Nov Drug Carr Syst. 2012, 5, 107–140.
  • Pisano, G. P. The Development Factory: Unlocking the Potential of Process Innovation. Harvard Business Press: United States; 1997.
  • Ahmed, L.; Gupta, P.; Martin, K. P.; Scheer, J. M.; Nixon, A. E.; Kumar, S. Intrinsic Physicochemical Profile of Marketed Antibody-Based Biotherapeutics. Proc. Natl. Acad. Sci. 2021, 118, e2020577118. DOI: 10.1073/pnas.2020577118.
  • Beg, S.; Almalki, W. H.; Malik, A.; Farhan, M.; Aatif, M.; Rahman, Z.; Alruwaili, N. K.; Alrobaian, M.; Tarique, M.; Rahman, M.; et al. 3D Printing for Drug Delivery and Biomedical Applications. Drug Discov. Today 2020, 25, 1668–1681. DOI: 10.1016/j.drudis.2020.07.007.
  • Jeong, S. H.; Takaishi, Y.; Fu, Y.; Park, K. Material Properties for Making Fast Dissolving Tablets by a Compression Method. J. Mater. Chem. 2008, 18, 3527–3535. DOI: 10.1039/b800209f.
  • Jamróz, W.; Kurek, M.; Łyszczarz, E.; Szafraniec, J.; Knapik-Kowalczuk, J.; Syrek, K.; Paluch, M.; Jachowicz, R. 3D Printed Orodispersible Films with Aripiprazole. Int. J. Pharm. 2017, 533, 413–420. DOI: 10.1016/j.ijpharm.2017.05.052.
  • Agarwal, S.; Punn, N. S.; Sonbhadra, S. K.; et al. Unleashing the Power of Disruptive and Emerging Technologies amid COVID-19: A Detailed Review. arXiv Prepr arXiv200511507 2020.
  • Abeer, M. M.; Mohd Amin, M. C. I.; Martin, C. A Review of Bacterial Cellulose-Based Drug Delivery Systems: Their Biochemistry, Current Approaches and Future Prospects. J. Pharm. Pharmacol. 2014, 66, 1047–1061. DOI: 10.1111/jphp.12234.
  • Mitsouras, D.; Liacouras, P.; Imanzadeh, A.; Giannopoulos, A. A.; Cai, T.; Kumamaru, K. K.; George, E.; Wake, N.; Caterson, E. J.; Pomahac, B.; et al. Medical 3D Printing for the Radiologist. Radiographics 2015, 35, 1965–1988. DOI: 10.1148/rg.2015140320.
  • Ajdary, R.; Ezazi, N. Z.; Correia, A.; et al. Multifunctional 3D-Printed Patches for Long-Term Drug Release Therapies after Myocardial Infarction. Adv. Funct. Mater. 2020, 30, 1–10.
  • Norman, J.; Madurawe, R. D.; Moore, C. V.; Khan, M. A.; Khairuzzaman, A. A New Chapter in Pharmaceutical Manufacturing: 3D-Printed Drug Products. Adv. Drug Deliv. Rev. 2017, 108, 39–50. DOI: 10.1016/j.addr.2016.03.001.
  • Tan, D. K.; Maniruzzaman, M.; Nokhodchi, A. Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery. Pharmaceutics 2018, 10, 203. DOI: 10.3390/pharmaceutics10040203.
  • Gaba, D. M. The Future Vision of Simulation in Health Care. BMJ Qual. Saf. 2004, 13, i2–i10. DOI: 10.1136/qshc.2004.009878.
  • Kumar Gupta, D.; Ali, M. H.; Ali, A.; et al. 3D Printing Technology in Healthcare: Applications, Regulatory Understanding, IP Repository and Clinical Trial Status. J. Drug Target 2021, 0, 1–20.
  • Bhat, S.; Kumar, A. Biomaterials and Bioengineering Tomorrow’s Healthcare. Biomatter 2013, 3, e24717. DOI: 10.4161/biom.24717.
  • Kumar, M.; Ge, Y.; Hilles, A. R.; Bhatia, A.; Mahmood, S. A Review on Polysaccharides Mediated Electrospun Nanofibers for Diabetic Wound Healing: Their Current Status with Regulatory Perspective. Int. J. Biol. Macromol. 2023, 234, 123696. DOI: 10.1016/j.ijbiomac.2023.123696.
  • Reddy, C. V.; V, B.; Venkatesh, M. P.; Pramod Kumar, T. M. First FDA Approved 3D Printed Drug Paved New Path for Increased Precision in Patient Care. ACCTRA 2020, 7, 93–103. DOI: 10.2174/2213476X07666191226145027.
  • Maulvi, F. A.; Shah, M. J.; Solanki, B. S.; Patel, A. S.; Soni, T. G.; Shah, D. O. Application of 3D Printing Technology in the Development of Novel Drug Delivery Systems. Int. J. Drug Dev. Res. 2017, 9, 0.
  • Tambe, S.; Jain, D.; Agarwal, Y.; Amin, P. Hot-Melt Extrusion: Highlighting Recent Advances in Pharmaceutical Applications. J. Drug Deliv. Sci. Technol. 2021, 63, 102452. DOI: 10.1016/j.jddst.2021.102452.
  • Trivedi, M.; Jee, J.; Silva, S.; Blomgren, C.; Pontinha, V. M.; Dixon, D. L.; Van Tassel, B.; Bortner, M. J.; Williams, C.; Gilmer, E.; et al. Additive Manufacturing of Pharmaceuticals for Precision Medicine Applications: A Review of the Promises and Perils in Implementation. Addit. Manuf. 2018, 23, 319–328. DOI: 10.1016/j.addma.2018.07.004.
  • Park, K. Nanotechnology: What It Can Do for Drug Delivery. J. Control Release Off. J. Control. Release Soc. 2007, 120, 1–3. DOI: 10.1016/j.jconrel.2007.05.003.
  • Novek, J. IT, Gender, and Professional Practice: Or, Why an Automated Drug Distribution System Was Sent Back to the Manufacturer. Sci. Technol. Hum. Values 2002, 27, 379–403. DOI: 10.1177/016224390202700303.
  • Derakhshanfar, S.; Mbeleck, R.; Xu, K.; Zhang, X.; Zhong, W.; Xing, M. 3D Bioprinting for Biomedical Devices and Tissue Engineering: A Review of Recent Trends and Advances. Bioact. Mater. 2018, 3, 144–156. DOI: 10.1016/j.bioactmat.2017.11.008.
  • Doolaanea, A.; Latif, N.; Singh, S.; Kumar, M.; Safa’at, M. F.; Alfatama, M.; Edros, R.; Bhatia, A. A Review on Physicochemical Properties of Polymers Used as Filaments in 3D-Printed Tablets. AAPS PharmSciTech 2023, 24, 116. DOI: 10.1208/s12249-023-02570-3.
  • Casas, F.; Ferrer, F.; FarrúS, B.; Casals, J.; Biete, A. Primary Small Cell Carcinoma of the Esophagus: A Review of the Literature with Emphasis on Therapy and Prognosis. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1997, 80, 1366–1372. DOI: 10.1002/(SICI)1097-0142(19971015)80:8<1366::AID-CNCR2>3.0.CO;2-D.
  • Jakus, A. E. An Introduction to 3D Printing—past, Present, and Future Promise. In 3D Printing in Orthopaedic Surgery. Elsevier: United States; 2019:1–15
  • Asadipour, E.; Asgari, M.; Mousavi, P.; Piri-Gharaghie, T.; Ghajari, G.; Mirzaie, A. Nano‐Biotechnology and Challenges of Drug Delivery System in Cancer Treatment Pathway. Chem. Biodivers. 2023, 20, e202201072. DOI: 10.1002/cbdv.202201072.
  • Song, R.; Murphy, M.; Li, C.; Ting, K.; Soo, C.; Zheng, Z. Current Development of Biodegradable Polymeric Materials for Biomedical Applications. Drug Des. Dev. Ther. 2018, 12, 3117–3145. DOI: 10.2147/DDDT.S165440.
  • Ghilan, A.; Chiriac, A. P.; Nita, L. E.; Rusu, A. G.; Neamtu, I.; Chiriac, V. M. Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges. J. Polym. Environ. 2020, 28, 1345–1367. DOI: 10.1007/s10924-020-01722-x.
  • Aliyu, A. A. A.; Panwisawas, C.; Shinjo, J. Laser-Based Additive Manufacturing of Bulk Metallic Glasses: Recent Advances and Future Perspectives for Biomedical Applications. J. Mater. Res. Technol. 2023, 23, 2956–2990.
  • Borkhataria, C.; Mehta, J.; Sakhiya, D. C. Pharmaceutical 3-D Printing Technology at a Glance. Available SSRN 4416413 2023.
  • Vermeulen, M.; Webb, S. M.; Russick, S.; McGeachy, A. C.; Muratore, K.; Walton, M. S. Identification, Transformations and Mobility of Hazardous Arsenic-Based Pigments on 19th Century Bookbindings in Accessible Library Collections. J. Hazard Mater. 2023, 454, 131453. DOI: 10.1016/j.jhazmat.2023.131453.
  • Kumar, M.; Sharma, A.; Mahmood, S.; Thakur, A.; Mirza, M. A.; Bhatia, A. Franz Diffusion Cell and Its Implication in Skin Permeation Studies. J. Dispers. Sci. Technol. 2023, 1–14. DOI: 10.1080/01932691.2023.2188923.
  • Kumar, M.; Dogra, R.; Mandal, U. K. Nanomaterial-Based Delivery of Vaccine through Nasal Route: Opportunities, Challenges, Advantages, and Limitations. J. Drug Deliv. Sci. Technol. 2022, 74, 103533. DOI: 10.1016/j.jddst.2022.103533.
  • Singh, S.; Kumar, M.; Doolaanea, A. A.; Mandal, U. K. A Recent Review on 3D-Printing: Scope and Challenges with Special Focus on Pharmaceutical Field. Curr. Pharm. Des. 2022, 28, 2488–2507. DOI: 10.2174/1381612828666220623091629.
  • Kumar, M.; Mahmood, S.; Mandal, U. K. An Updated account on Formulations and Strategies for the Treatment of Burn Infection-A Review. Curr. Pharm. Des. 2022, 28, 1480–1492. DOI: 10.2174/1381612828666220519145859.
  • Bazli, M.; Ashrafi, H.; Rajabipour, A.; Kutay, C. 3D Printing for Remote Housing: Benefits and Challenges. Autom. Constr. 2023, 148, 104772. DOI: 10.1016/j.autcon.2023.104772.
  • Shi, K.; Zhangzhong, L.; Han, F.; Zhang, S.; Guo, R.; Yao, X. Reducing Emitter Clogging in Drip Fertigation Systems by Magnetization Technology. Sustainability 2023, 15, 3712. DOI: 10.3390/su15043712.
  • Berton, P.; Shamshina, J. L. Ionic Liquids as Tools to Incorporate Pharmaceutical Ingredients into Biopolymer-Based Drug Delivery Systems. Pharmaceuticals 2023, 16, 272. DOI: 10.3390/ph16020272.
  • Thompson, C. A. Pharmacists Provide Self-Supporting, Facility-Based Services 2015, 72, 1518–1522.
  • Junqueira, L. A.; Tabriz, A. G.; Raposo, F. J. Coupling of Fused Deposition Modeling and Inkjet Printing to Produce Drug Loaded 3D Printed Tablets. Pharmaceutics 2022, 14, 159.
  • Shi, K.; Tan, D. K.; Nokhodchi, A.; Maniruzzaman, M. Drop-On-Powder 3D Printing of Tablets with an anti-Cancer Drug, 5-Fluorouracil. Pharmaceutics 2019, 11, 150. DOI: 10.3390/pharmaceutics11040150.
  • Sima, F.; Mutlu, E. C.; Eroglu, M. S.; Sima, L. E.; Serban, N.; Ristoscu, C.; Petrescu, S. M.; Oner, E. T.; Mihailescu, IN. Levan Nanostructured Thin Films by MAPLE Assembling. Biomacromolecules 2011, 12, 2251–2256. DOI: 10.1021/bm200340b.
  • Dimitrov, D.; Schreve, K.; De Beer, N. Advances in Three Dimensional printing - State of the Art and Future Perspectives. Rapid Prototyp. J. 2006, 12, 136–147. DOI: 10.1108/13552540610670717.
  • Singh, S. P.; Raj, A.; Singh, S. P.; Morya, N. A Review on the Role of 3D Printing in Pharmacy. Int. J. Pharm. Prof. Res. 2023, 14, 110–123.
  • Nazir, A.; Gokcekaya, O.; Md Masum Billah, K.; Ertugrul, O.; Jiang, J.; Sun, J.; Hussain, S. Multi-Material Additive Manufacturing: A Systematic Review of Design, Properties, Applications, Challenges, and 3D Printing of Materials and Cellular Metamaterials. Mater. Des. 2023, 226, 111661. DOI: 10.1016/j.matdes.2023.111661.
  • Rezaie, F.; Farshbaf, M.; Dahri, M.; Masjedi, M.; Maleki, R.; Amini, F.; Wirth, J.; Moharamzadeh, K.; Weber, F. E.; Tayebi, L.; et al. 3D Printing of Dental Prostheses: Current and Emerging Applications. J. Compos. Sci. 2023, 7, 80. DOI: 10.3390/jcs7020080.
  • Khorasani, M.; Gibson, I.; Ghasemi, A. H.; Hadavi, E.; Rolfe, B. Laser Subtractive and Laser Powder Bed Fusion of Metals: Review of Process and Production Features. RPJ 2023, 29, 935–958. DOI: 10.1108/RPJ-03-2021-0055.
  • Patel, K. S.; Solanki, S. D.; Shah, D. B.; Joshi, S. J.; Patel, K. M. SLS Technology, Research Has Been Done on the Modelling and Simulation of Composite Materials. Int. J. Interact Des. Manuf. 2023, 1–8.
  • Xu, R.; Wang, W.; Wang, K.; Dai, Q. Finite Element Simulation of Residual Stress Distribution during Selective Laser Melting of Mg-Y-Sm-Zn-Zr Alloy. Mater. Today Commun. 2023, 35, 105571. DOI: 10.1016/j.mtcomm.2023.105571.
  • k. Jimomi, I.; Malhotra, I.; Malhotra, P.; et al. Evaluation of Discrepancy in Margin Adaptation of Metal Copings Fabricated by Conventional Casting, CAD/CAM and Direct Metal Laser Sintering-A Comparartive in-Vitro Study. J. Surv. Fish Sci. 2023, 10, 926–937.
  • Tan, J. Z. Y.; Ávila-López, M. A.; Jahanbakhsh, A.; Lu, X.; Bonilla-Cruz, J.; Lara-Ceniceros, T. E.; Andresen, J. M.; Maroto-Valer, M. M. 3D Direct Ink Printed Materials for Chemical Conversion and Environmental Remediation Applications: A Review. J. Mater. Chem. A 2023, 11, 5408–5426. DOI: 10.1039/D2TA08922J.
  • Kloock, M.; Scheffe, P.; Gress, O.; Alrifaee, B. An Architecture for Experiments in Connected and Automated Vehicles. IEEE Open J. Intell. Transp. Syst. 2023, 4, 175–186. DOI: 10.1109/OJITS.2023.3250951.
  • Moukachar, A.; Harvey, K.; Roke, E. Development and Evaluation of a Low‐Cost Lego 3d Bioprinter: From Building‐Blocks to Building Blocks of Life. Adv. Mater. Technol. 2023, 8, 2100868. DOI: 10.1002/admt.202100868.
  • Kumar, M.; Kumar, D.; Kumar, S.; Kumar, A.; Mandal, U. K. A Recent Review on Bio-Availability Enhancement of Poorly Water-Soluble Drugs by Using Bioenhancer and Nanoparticulate Drug Delivery System. Curr. Pharm. Des. 2022, 28, 3212–3224. DOI: 10.2174/1381612829666221021152354.
  • Hirshfield, L.; Giridhar, A.; Taylor, L. S.; Harris, M. T.; Reklaitis, G. V. Dropwise Additive Manufacturing of Pharmaceutical Products for Solvent-Based Dosage Forms. J. Pharm. Sci. 2014, 103, 496–506. DOI: 10.1002/jps.23803.
  • Noh, G.; Keum, T.; Seo, J.-E.; Choi, J.; Rakesh, B.; Shrawani, L.; Park, B.; Choi, Y. W.; Lee, S. Development and Evaluation of a Water Soluble Fluorometholone Eye Drop Formulation Employing Polymeric Micelle. Pharmaceutics 2018, 10, 10. DOI: 10.3390/pharmaceutics10040208.
  • Fiedor, P.; Ortyl, J. A New Approach to Micromachining: High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology. Materials (Basel) 2020, 13, 2951. DOI: 10.3390/ma13132951.
  • Wohlers, T.; Gornet, T. History of Additive Manufacturing. Wohlers Rep. 2014, 24, 118.
  • Cate, D. M.; Adkins, J. A.; Mettakoonpitak, J.; Henry, C. S. Recent Developments in Paper-Based Microfluidic Devices. Anal. Chem. 2015, 87, 19–41. DOI: 10.1021/ac503968p.
  • Fu, W.; Yan, X.; Gurumukhi, Y.; Garimella, V. S.; King, W. P.; Miljkovic, N. High Power and Energy Density Dynamic Phase Change Materials Using Pressure-Enhanced Close Contact Melting. Nat. Energy 2022, 7, 270–280. DOI: 10.1038/s41560-022-00986-y.
  • Huang, J.; Qin, Q.; Wang, J. A Review of Stereolithography: Processes and Systems. Processes 2020, 8, 1138. DOI: 10.3390/pr8091138.
  • Singh, S.; Prakash, C.; Ramakrishna, S. Three-Dimensional Printing in the Fight against Novel Virus COVID-19: Technology Helping Society during an Infectious Disease Pandemic. Technol. Soc. 2020, 62, 101305. DOI: 10.1016/j.techsoc.2020.101305.
  • Chatterjee, S.; Ghosal, K.; Kumar, M.; Mahmood, S.; Thomas, S. A Detailed Discussion on Interpenetrating Polymer Network (IPN) Based Drug Delivery System for the Advancement of Health Care System. J. Drug Deliv. Sci. Technol. 2022, 79, 104095. DOI: 10.1016/j.jddst.2022.104095.
  • Xu, X.; Robles-Martinez, P.; Madla, C. M.; Joubert, F.; Goyanes, A.; Basit, A. W.; Gaisford, S. Stereolithography (SLA) 3D Printing of an Antihypertensive Polyprintlet: Case Study of an Unexpected Photopolymer-Drug Reaction. Addit. Manuf. 2020, 33, 101071. DOI: 10.1016/j.addma.2020.101071.
  • Ozakar, E.; Cetin, M.; Ates, O.; Hacimuftuoglu, A. Nifedipine-Loaded Polymeric Nanoparticles: Preparation and in Vitro Characterization. Pak. J. Pharm. Sci. 2019, 32, 547–554.
  • Xu, L.; Yang, Q.; Qiang, W.; et al. Hydrophilic Excipient-Independent Drug Release from SLA-Printed Pellets 2021, 13, 1717.
  • Daminabo, S. C.; Goel, S.; Grammatikos, S. A.; Nezhad, H. Y.; Thakur, V. K. Fused Deposition Modeling-Based Additive Manufacturing (3D Printing): Techniques for Polymer Material Systems. Mater. Today Chem. 2020, 16, 100248. DOI: 10.1016/j.mtchem.2020.100248.
  • Annaji, M.; Ramesh, S.; Poudel, I.; Govindarajulu, M.; Arnold, R. D.; Dhanasekaran, M.; Babu, R. J. Application of Extrusion-Based 3D Printed Dosage Forms in the Treatment of Chronic Diseases. J. Pharm. Sci. 2020, 109, 3551–3568. DOI: 10.1016/j.xphs.2020.09.042.
  • Đuranović, M.; Obeid, S.; Madžarević, M.; Cvijić, S.; Ibrić, S. Paracetamol Extended Release FDM 3D Printlets: Evaluation of Formulation Variables on Printability and Drug Release. Int. J. Pharm. 2021, 592, 120053. DOI: 10.1016/j.ijpharm.2020.120053.
  • Kumar, M.; Keshwania, P.; Chopra, S.; Mahmood, S.; Bhatia, A. Therapeutic Potential of Nanocarrier-Mediated Delivery of Phytoconstituents for Wound Healing: Their Current Status and Future Perspective. AAPS PharmSciTech 2023, 24, 155. DOI: 10.1208/s12249-023-02616-6.
  • Okwuosa, T. C.; Stefaniak, D.; Arafat, B.; Isreb, A.; Wan, K.-W.; Alhnan, M. A. A Lower Temperature FDM 3D Printing for the Manufacture of Patient-Specific Immediate Release Tablets. Pharm. Res. 2016, 33, 2704–2712. DOI: 10.1007/s11095-016-1995-0.
  • Eleftheriadis, G. K.; Ritzoulis, C.; Bouropoulos, N.; Tzetzis, D.; Andreadis, D. A.; Boetker, J.; Rantanen, J.; Fatouros, D. G. Unidirectional Drug Release from 3D Printed Mucoadhesive Buccal Films Using FDM Technology: In Vitro and Ex Vivo Evaluation. Eur. J. Pharm. Biopharm. 2019, 144, 180–192. DOI: 10.1016/j.ejpb.2019.09.018.
  • Sadia, M.; Sośnicka, A.; Arafat, B.; Isreb, A.; Ahmed, W.; Kelarakis, A.; Alhnan, M. A. Adaptation of Pharmaceutical Excipients to FDM 3D Printing for the Fabrication of Patient-Tailored Immediate Release Tablets. Int. J. Pharm. 2016, 513, 659–668. DOI: 10.1016/j.ijpharm.2016.09.050.
  • Goyanes, A.; Chang, H.; Sedough, D.; Hatton, G. B.; Wang, J.; Buanz, A.; Gaisford, S.; Basit, A. W. Fabrication of Controlled-Release Budesonide Tablets via Desktop (FDM) 3D Printing. Int. J. Pharm. 2015, 496, 414–420. DOI: 10.1016/j.ijpharm.2015.10.039.
  • Grodowska, K.; Parczewski, A. Organic Solvents in the Pharmaceutical Industry. Acta Pol. Pharm. Drug Res. 2010, 67, 3–12.
  • Yang, H.; Hong, J.; Lee, S.; Shin, S.; Kim, J.; Kim, J. Pressure‐Assisted Tryptic Digestion Using a Syringe. Rapid Comm. Mass Spectrom. 2010, 24, 901–908. DOI: 10.1002/rcm.4467.
  • Elbadawi, M.; Nikjoo, D.; Gustafsson, T.; Gaisford, S.; Basit, A. W. Pressure-Assisted Microsyringe 3D Printing of Oral Films Based on Pullulan and Hydroxypropyl Methylcellulose. Int. J. Pharm. 2021, 595, 120197. DOI: 10.1016/j.ijpharm.2021.120197.
  • Korte, C.; Quodbach, J. 3D-Printed Network Structures as Controlled-Release Drug Delivery Systems: Dose Adjustment, API Release Analysis and Prediction. AAPS PharmSciTech 2018, 19, 3333–3342. DOI: 10.1208/s12249-018-1017-0.
  • Infanger, S.; Haemmerli, A.; Iliev, S.; Baier, A.; Stoyanov, E.; Quodbach, J. Powder Bed 3D-Printing of Highly Loaded Drug Delivery Devices with Hydroxypropyl Cellulose as Solid Binder. Int. J. Pharm. 2019, 555, 198–206. DOI: 10.1016/j.ijpharm.2018.11.048.
  • Gottschalk, N.; Burkard, A.; Quodbach, J.; Bogdahn, M. Drop-on-Powder 3D Printing of Amorphous High Dose Oral Dosage Forms: Process Development, Opportunities and Printing Limitations. Int. J. Pharm. X 2023, 5, 100151. DOI: 10.1016/j.ijpx.2022.100151.
  • Mohapatra, S.; Kar, R. K.; Biswal, P. K.; Bindhani, S. Approaches of 3D Printing in Current Drug Delivery. Sens. Int. 2022, 3, 100146. DOI: 10.1016/j.sintl.2021.100146.
  • Jacob, S.; Nair, A. B.; Patel, V.; Shah, J. 3D Printing Technologies: Recent Development and Emerging Applications in Various Drug Delivery Systems. AAPS PharmSciTech 2020, 21, 220. DOI: 10.1208/s12249-020-01771-4.
  • Trenfield, S. J.; Xu, X.; Goyanes, A.; Rowland, M.; Wilsdon, D.; Gaisford, S.; Basit, A. W. Releasing Fast and Slow: Non-Destructive Prediction of Density and Drug Release from SLS 3D Printed Tablets Using NIR Spectroscopy. Int. J. Pharm. X 2023, 5, 100148. DOI: 10.1016/j.ijpx.2022.100148.
  • Trenfield, S. J.; Januskaite, P.; Goyanes, A.; Wilsdon, D.; Rowland, M.; Gaisford, S.; Basit, A. W. Prediction of Solid-State Form of SLS 3D Printed Medicines Using NIR and Raman Spectroscopy. Pharmaceutics 2022, 14, 589. DOI: 10.3390/pharmaceutics14030589.
  • Awad, A.; Fina, F.; Trenfield, S. J.; Patel, P.; Goyanes, A.; Gaisford, S.; Basit, A. W. 3D Printed Pellets (Miniprintlets): a Novel, Multi-Drug, Controlled Release Platform Technology. Pharmaceutics 2019, 11, 148. DOI: 10.3390/pharmaceutics11040148.
  • Fina, F.; Madla, C. M.; Goyanes, A.; Zhang, J.; Gaisford, S.; Basit, A. W. Fabricating 3D Printed Orally Disintegrating Printlets Using Selective Laser Sintering. Int. J. Pharm. 2018, 541, 101–107. DOI: 10.1016/j.ijpharm.2018.02.015.
  • Gueche, Y. A.; Sanchez-Ballester, N. M.; Cailleaux, S.; Bataille, B.; Soulairol, I. Selective Laser Sintering (SLS), a New Chapter in the Production of Solid Oral Forms (SOFs) by 3D Printing. Pharmaceutics 2021, 13, 1212. DOI: 10.3390/pharmaceutics13081212.
  • Aguilar-de-Leyva, Á.; Linares, V.; Casas, M.; Caraballo, I. 3D Printed Drug Delivery Systems Based on Natural Products. Pharmaceutics 2020, 12, 620. DOI: 10.3390/pharmaceutics12070620.
  • Lu, A.; Zhang, J.; Jiang, J.; Zhang, Y.; Giri, B. R.; Kulkarni, V. R.; Aghda, N. H.; Wang, J.; Maniruzzaman, M. Novel 3D Printed Modular Tablets Containing Multiple anti-Viral Drugs: A Case of High Precision Drop-on-Demand Drug Deposition. Pharm. Res. 2022, 39, 2905–2918. DOI: 10.1007/s11095-022-03378-9.
  • Wang, J.; Goyanes, A.; Gaisford, S.; Basit, A. W. Stereolithographic (SLA) 3D Printing of Oral Modified-Release Dosage Forms. Int. J. Pharm. 2016, 503, 207–212. DOI: 10.1016/j.ijpharm.2016.03.016.
  • Xu, X.; Goyanes, A.; Trenfield, S. J.; Diaz-Gomez, L.; Alvarez-Lorenzo, C.; Gaisford, S.; Basit, A. W. Stereolithography (SLA) 3D Printing of a Bladder Device for Intravesical Drug Delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111773. DOI: 10.1016/j.msec.2020.111773.
  • Martinez, P. R.; Goyanes, A.; Basit, A. W.; Gaisford, S. Influence of Geometry on the Drug Release Profiles of Stereolithographic (SLA) 3D-Printed Tablets. AAPS PharmSciTech 2018, 19, 3355–3361. DOI: 10.1208/s12249-018-1075-3.
  • Karakurt, I.; Aydoğdu, A.; Çıkrıkcı, S.; Orozco, J.; Lin, L. Stereolithography (SLA) 3D Printing of Ascorbic Acid Loaded Hydrogels: A Controlled Release Study. Int. J. Pharm. 2020, 584, 119428. DOI: 10.1016/j.ijpharm.2020.119428.
  • Ikeda, S.; Kobayashi, M.; Aoki, S.; Terukina, T.; Kanazawa, T.; Kojima, H.; Kondo, H. 3D-Printed Fast-Dissolving Oral Dosage Forms via Fused Deposition Modeling Based on Sugar Alcohol and Poly (Vinyl Alcohol)—Preparation, Drug Release Studies and in Vivo Oral Absorption. Pharmaceutics 2023, 15, 395. DOI: 10.3390/pharmaceutics15020395.
  • Zhang, Z.; Feng, S.; Almotairy, A.; Bandari, S.; Repka, M. A. Development of Multifunctional Drug Delivery System via Hot-Melt Extrusion Paired with Fused Deposition Modeling 3D Printing Techniques. Eur. J. Pharm. Biopharm. 2023, 183, 102–111. DOI: 10.1016/j.ejpb.2023.01.004.
  • Digkas, T.; Porfire, A.; Van Renterghem, J.; Samaro, A.; Borodi, G.; Vervaet, C.; Crișan, A. G.; Iurian, S.; De Beer, T.; Tomuta, I.; et al. Development of Diclofenac Sodium 3D Printed Cylindrical and Tubular-Shaped Tablets through Hot Melt Extrusion and Fused Deposition Modelling Techniques. Pharmaceuticals 2023, 16, 1062. DOI: 10.3390/ph16081062.
  • Ahmed, M. M.; Fatima, F.; Alnami, A.; Alsenaidy, M.; Aodah, A. H.; Aldawsari, M. F.; Almutairy, B.; Anwer, M. K.; Jafar, M. Design and Characterization of Baricitinib Incorporated PLA 3D Printed Pills by Fused Deposition Modeling: An Oral Pill for Treating Alopecia Areata. Polymers (Basel) 2023, 15, 1825. DOI: 10.3390/polym15081825.
  • Chung, S.; Zhang, P.; Repka, M. A. Fabrication of Timed-Release Indomethacin Core–Shell Tablets for Chronotherapeutic Drug Delivery Using Dual Nozzle Fused Deposition Modeling (FDM) 3D Printing. Eur. J. Pharm. Biopharm. 2023, 188, 254–264. DOI: 10.1016/j.ejpb.2023.05.015.
  • El Aita, I.; Breitkreutz, J.; Quodbach, J. On-Demand Manufacturing of Immediate Release Levetiracetam Tablets Using Pressure-Assisted Microsyringe Printing. Eur. J. Pharm. Biopharm. 2019, 134, 29–36. DOI: 10.1016/j.ejpb.2018.11.008.
  • Tagami, T.; Okamura, M.; Ogawa, K.; Ozeki, T. Fabrication of Mucoadhesive Films Containing Pharmaceutical Ionic Liquid and Eudragit Polymer Using Pressure-Assisted Microsyringe-Type 3D Printer for Treating Oral Mucositis. Pharmaceutics 2022, 14, 1930. DOI: 10.3390/pharmaceutics14091930.
  • Rahman-Yildir, J.; Fischer, B.; Breitkreutz, J. Development of Sustained-Release Drug-Loaded Intravesical Inserts via Semi-Solid Micro-Extrusion 3D-Printing for Bladder Targeting. Int. J. Pharm. 2022, 622, 121849. DOI: 10.1016/j.ijpharm.2022.121849.
  • Zanjanizadeh Ezazi, N.; Ajdary, R.; Correia, A.; Mäkilä, E.; Salonen, J.; Kemell, M.; Hirvonen, J.; Rojas, O. J.; Ruskoaho, H. J.; Santos, H. A.; et al. Fabrication and Characterization of Drug-Loaded Conductive Poly (Glycerol Sebacate)/Nanoparticle-Based Composite Patch for Myocardial Infarction Applications. ACS Appl. Mater. Interfaces 2020, 12, 6899–6909. DOI: 10.1021/acsami.9b21066.
  • Wu, W.; Zheng, Q.; Guo, X.; Sun, J.; Liu, Y. A Programmed Release Multi-Drug Implant Fabricated by Three-Dimensional Printing Technology for Bone Tuberculosis Therapy. Biomed. Mater. 2009, 4, 065005. DOI: 10.1088/1748-6041/4/6/065005.
  • Goyanes, A.; Det-Amornrat, U.; Wang, J.; Basit, A. W.; Gaisford, S. 3D Scanning and 3D Printing as Innovative Technologies for Fabricating Personalized Topical Drug Delivery Systems. J. Control Release 2016, 234, 41–48. DOI: 10.1016/j.jconrel.2016.05.034.
  • Wickström, H.; Hilgert, E.; Nyman, J. O.; Desai, D.; Şen Karaman, D.; de Beer, T.; Sandler, N.; Rosenholm, J. M. Inkjet Printing of Drug-Loaded Mesoporous Silica Nanoparticles—A Platform for Drug Development. Molecules 2017, 22, 1–20. DOI: 10.3390/molecules22112020.
  • Vera, D.; Garcia-Diaz, M.; Torras, N.; Alvarez, M.; Villa, R.; Martinez, E. Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms. ACS Appl. Mater. Interfaces 2021, 13, 13920–13933. DOI: 10.1021/acsami.0c21573.
  • Tian, P.; Yang, F.; Xu, Y.; Lin, M.-M.; Yu, L.-P.; Lin, W.; Lin, Q.-F.; Lv, Z.-F.; Huang, S.-Y.; Chen, Y.-Z.; et al. Oral Disintegrating Patient-Tailored Tablets of Warfarin Sodium Produced by 3D Printing. Drug Dev. Ind. Pharm. 2018, 44, 1918–1923. DOI: 10.1080/03639045.2018.1503291.
  • Wang, S.; Zhu, M.; Zhao, L.; Kuang, D.; Kundu, S. C.; Lu, S. Insulin-Loaded Silk Fibroin Microneedles as Sustained Release System. ACS Biomater. Sci. Eng. 2019, 5, 1887–1894. DOI: 10.1021/acsbiomaterials.9b00229.
  • Liang, K.; Carmone, S.; Brambilla, D.; Leroux, J. C. 3D Printing of a Wearable Personalized Oral Delivery Device: A First-in-Human Study. Sci. Adv. 2018, 4, eaat2544. DOI: 10.1126/sciadv.aat2544.
  • Tagami, T.; Yoshimura, N.; Goto, E.; Noda, T.; Ozeki, T. Fabrication of Muco-Adhesive Oral Films by the 3D Printing of Hydroxypropyl Methylcellulose-Based Catechin-Loaded Formulations. Biol. Pharm. Bull. 2019, 42, 1898–1905. DOI: 10.1248/bpb.b19-00481.
  • Weisman, J. A.; Ballard, D. H.; Jammalamadaka, U.; Tappa, K.; Sumerel, J.; D'Agostino, H. B.; Mills, D. K.; Woodard, P. K. 3D Printed Antibiotic and Chemotherapeutic Eluting Catheters for Potential Use in Interventional Radiology: In Vitro Proof of Concept Study. Acad. Radiol. 2019, 26, 270–274. DOI: 10.1016/j.acra.2018.03.022.
  • Varghese, R.; Salvi, S.; Sood, P.; Karsiya, J.; Kumar, D. Recent Advancements in Additive Manufacturing Techniques Employed in the Pharmaceutical Industry: A Bird’s Eye View. Ann. 3D Print Med. 2022, 8, 100081. DOI: 10.1016/j.stlm.2022.100081.
  • Bg, P. K.; Mehrotra, S.; Marques, S. M.; Kumar, L.; Verma, R. 3D Printing in Personalized Medicines: A Focus on Applications of the Technology. Mater Today Commun. 2023, 35, 105875. DOI: 10.1016/j.mtcomm.2023.105875.
  • Bandari, S.; Nyavanandi, D.; Dumpa, N.; Repka, M. A. Coupling Hot Melt Extrusion and Fused Deposition Modeling: Critical Properties for Successful Performance. Adv. Drug Deliv. Rev. 2021, 172, 52–63. DOI: 10.1016/j.addr.2021.02.006.
  • Farmer, Z.-L.; Utomo, E.; Domínguez-Robles, J.; Mancinelli, C.; Mathew, E.; Larrañeta, E.; Lamprou, D. A. 3D Printed Estradiol-Eluting Urogynecological Mesh Implants: Influence of Material and Mesh Geometry on Their Mechanical Properties. Int. J. Pharm. 2021, 593, 120145. DOI: 10.1016/j.ijpharm.2020.120145.
  • Russi, L.; Del Gaudio, C. 3D Printed Multicompartmental Capsules for a Progressive Drug Release. Ann. 3D Print Med. 2021, 3, 100026. DOI: 10.1016/j.stlm.2021.100026.
  • Chen, L.; Shao, J.; Yu, Q.; Wang, S. High-Strength, anti-Fatigue, Stretchable Self-Healing Polyvinyl Alcohol Hydrogel Based on Borate Bonds and Hydrogen Bonds. J. Dispers. Sci. Technol. 2022, 43, 690–703. DOI: 10.1080/01932691.2020.1844740.
  • Abdeen, Z. Swelling and Reswelling Characteristics of Cross-Linked Poly (Vinyl Alcohol)/Chitosan Hydrogel Film. J. Dispers. Sci. Technol. 2011, 32, 1337–1344. DOI: 10.1080/01932691.2010.505869.
  • Pereira, G. G.; Figueiredo, S.; Fernandes, A. I.; Pinto, J. F. Polymer Selection for Hot-Melt Extrusion Coupled to Fused Deposition Modelling in Pharmaceutics. Pharmaceutics 2020, 12, 795. DOI: 10.3390/pharmaceutics12090795.
  • Zarghami, S.; Tofighy, M. A.; Mohammadi, T. Adsorption of Zinc and Lead Ions from Aqueous Solutions Using Chitosan/Polyvinyl Alcohol Membrane Incorporated via Acid-Functionalized Carbon Nanotubes. J. Dispers. Sci. Technol. 2015, 36, 1793–1798. DOI: 10.1080/01932691.2014.974814.
  • Li, Q.; Wen, H.; Jia, D.; et al. Preparation and Investigation of Controlled-Release Glipizide Novel Oral Device with Three-Dimensional Printing. Vol 525. Elsevier B.V.: United States; 2017. DOI: 10.1016/j.ijpharm.2017.03.066.
  • Goyanes, A.; Wang, J.; Buanz, A.; Martínez-Pacheco, R.; Telford, R.; Gaisford, S.; Basit, A. W. 3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics. Mol. Pharm. 2015, 12, 4077–4084. DOI: 10.1021/acs.molpharmaceut.5b00510.
  • Öblom, H.; Sjöholm, E.; Rautamo, M.; Sandler, N. Towards Printed Pediatric Medicines in Hospital Pharmacies: Comparison of 2d and 3d-Printed Orodispersiblewarfarin Films with Conventional Oral Powders in Unit Dose Sachets. Pharmaceutics 2019, 11, 11. DOI: 10.3390/pharmaceutics11070334.
  • Goyanes, A.; Kobayashi, M.; Martínez-Pacheco, R.; Gaisford, S.; Basit, A. W. Fused-Filament 3D Printing of Drug Products: Microstructure Analysis and Drug Release Characteristics of PVA-Based Caplets. Int. J. Pharm. 2016, 514, 290–295. DOI: 10.1016/j.ijpharm.2016.06.021.
  • Naeli, M. H.; Milani, J. M.; Farmani, J.; Zargaraan, A. Ethyl Cellulose/Hydroxypropyl Methyl Cellulose‐Based Oleogel Shortening: Effect on Batter Rheology and Physical Properties of Sponge Cake. J. Am. Oil Chem. Soc. 2023, 100, 743–755.
  • Fan, W.; Zhou, J.; Ding, Y.; Xiao, Z. Fabrication and Performance of Nitrocellulose Nanoparticles Reinforced Environment-Friendly Waterborne Ethyl Cellulose (Surelease®) Nanocomposites. Colloids Surf. A Physicochem. Eng. Asp. 2023, 662, 130997. DOI: 10.1016/j.colsurfa.2023.130997.
  • Hosseini, S.; Kadivar, M.; Shekarchizadeh, H.; Alsharif, M. A. Preparation and Characterisation of Biodegradable Polylactic Acid/Ethyl Cellulose Film Produced Using the Extruder and Roller Mixer Machine. Int. J. Food Sci. Technol. 2023, 58, 777–784. DOI: 10.1111/ijfs.16232.
  • Dürig, T.; Karan, K. Binders in Wet Granulation. Academic press: United States, 2018.
  • Kazlauske, J.; Gårdebjer, S.; Almer, S.; Larsson, A. The Importance of the Molecular Weight of Ethyl Cellulose on the Properties of Aqueous-Based Controlled Release Coatings. Int. J. Pharm. 2017, 519, 157–164. DOI: 10.1016/j.ijpharm.2016.12.021.
  • Yang, Y.; Wang, H.; Li, H.; Ou, Z.; Yang, G. 3D Printed Tablets with Internal Scaffold Structure Using Ethyl Cellulose to Achieve Sustained Ibuprofen Release. Eur. J. Pharm. Sci. 2018, 115, 11–18. DOI: 10.1016/j.ejps.2018.01.005.
  • Tan, D. K.; Maniruzzaman, M.; Nokhodchi, A. Development and Optimisation of Novel Polymeric Compositions for Sustained Release Theophylline Caplets (PrintCap) via FDM 3D Printing. Polymers (Basel) 2020, 12, 27. DOI: 10.3390/polym12010027.
  • Robles-Martinez, P.; Xu, X.; Trenfield, S. J.; Awad, A.; Goyanes, A.; Telford, R.; Basit, A. W.; Gaisford, S. 3D Printing of a Multi-Layered Polypill Containing Six Drugs Using a Novel Stereolithographic Method. Pharmaceutics 2019, 11, 274. DOI: 10.3390/pharmaceutics11060274.
  • Yu, C.; Zhang, C.; Guan, X.; Yuan, D. The Solid Dispersion of Resveratrol with Enhanced Dissolution and Good System Physical Stability. J. Drug Deliv. Sci. Technol. 2023, 84, 104507. DOI: 10.1016/j.jddst.2023.104507.
  • Maghsoodi, M.; Mollaie Astemal, S.; Nokhodchi, A.; Kiaie, H.; Talebi, F. The Effect of Anionic Eudragit Polymers on Drug Supersaturation and in Vitro Permeation Improvement. Drug Dev. Ind. Pharm. 2023, 49, 1–15.
  • Senarat, S.; Pichayakorn, W.; Phaechamud, T.; Tuntarawongsa, S. Antisolvent Eudragit® Polymers Based in Situ Forming Gel for Periodontal Controlled Drug Delivery. J. Drug. Deliv. Sci. Technol. 2023, 82, 104361. DOI: 10.1016/j.jddst.2023.104361.
  • Nikam, A.; Sahoo, P. R.; Musale, S.; Pagar, R. R.; Paiva-Santos, A. C.; Giram, P. S. A Systematic Overview of Eudragit® Based Copolymer for Smart Healthcare. Pharmaceutics 2023, 15, 587. DOI: 10.3390/pharmaceutics15020587.
  • Nguyen, C. A.; Konan-Kouakou, Y. N.; Allémann, E.; Doelker, E.; Quintanar-Guerrero, D.; Fessi, H.; Gurny, R. Preparation of Surfactant-Free Nanoparticles of Methacrylic Acid Copolymers Used for Film Coating. AAPS PharmSciTech 2006, 7, 63–E60. DOI: 10.1208/pt070363.
  • Jung, D.-H.; Song, J. G.; Han, H.-K. Development and Evaluation of a Sustained Release Solid Dispersion of Cefdinir Using a Hydrophobic Polymeric Carrier and Aminoclay. J. Drug Deliv. Sci. Technol. 2023, 84, 104503. DOI: 10.1016/j.jddst.2023.104503.
  • Jain, S. K.; Jain, A. K.; Rajpoot, K. Expedition of Eudragit® Polymers in the Development of Novel Drug Delivery Systems. Curr. Drug Deliv. 2020, 17, 448–469. DOI: 10.2174/1567201817666200512093639.
  • Joseph, S. K.; Sabitha, M.; Nair, S. C. Stimuli-Responsive Polymeric Nanosystem for Colon Specific Drug Delivery. Adv. Pharm. Bull. 2020, 10, 1–12. DOI: 10.15171/apb.2020.001.
  • Pahwa, R.; Ahuja, M. Design and Development of Fluconazole-Loaded Nanocellulose-Eudragit Vaginal Drug Delivery System. J. Pharm. Innov. 2023, 1–19. DOI: 10.1007/s12247-022-09705-2.
  • Melocchi, A.; Parietti, F.; Maroni, A.; Foppoli, A.; Gazzaniga, A.; Zema, L. Hot-Melt Extruded Filaments Based on Pharmaceutical Grade Polymers for 3D Printing by Fused Deposition Modeling. Int. J. Pharm. 2016, 509, 255–263. DOI: 10.1016/j.ijpharm.2016.05.036.
  • Joshi, G. V.; Kevadiya, B. D.; Bajaj, H. C. Controlled Release Formulation of Ranitidine-Containing Montmorillonite and Eudragit® E-100. Drug Dev. Ind. Pharm. 2010, 36, 1046–1053. DOI: 10.3109/03639041003642073.
  • Alhijjaj, M.; Belton, P.; Qi, S. An Investigation into the Use of Polymer Blends to Improve the Printability of and Regulate Drug Release from Pharmaceutical Solid Dispersions Prepared via Fused Deposition Modeling (FDM) 3D Printing. Eur. J. Pharm. Biopharm. 2016, 108, 111–125. DOI: 10.1016/j.ejpb.2016.08.016.
  • Nasereddin, J. M.; Wellner, N.; Alhijjaj, M.; Belton, P.; Qi, S. Development of a Simple Mechanical Screening Method for Predicting the Feedability of a Pharmaceutical FDM 3D Printing Filament. Pharm. Res. 2018, 35, 151. DOI: 10.1007/s11095-018-2432-3.
  • Kempin, W.; Franz, C.; Koster, L.-C.; Schneider, F.; Bogdahn, M.; Weitschies, W.; Seidlitz, A. Assessment of Different Polymers and Drug Loads for Fused Deposition Modeling of Drug Loaded Implants. Eur. J. Pharm. Biopharm. 2017, 115, 84–93. DOI: 10.1016/j.ejpb.2017.02.014.
  • Abdulkhaleq, N. M.; Ghareeb, M. M. Combination of FDM 3D Printing and Compressed Tablet for Preparation of Baclofen as Gastro-Floating Drug Delivery System. IJPS 2023, 31, 18–24. DOI: 10.31351/vol31issSuppl.pp18-24.
  • Picker-Freyer, K. M.; Dürig, T. Physical Mechanical and Tablet Formation Properties of Hydroxypropylcellulose: In Pure Form and in Mixtures. AAPS PharmSciTech 2007, 8, E92. DOI: 10.1208/pt0804092.
  • Niederquell, A.; Stoyanov, E.; Kuentz, M. Physiological Buffer Effects in Drug Supersaturation-a Mechanistic Study of Hydroxypropyl Cellulose as Precipitation Inhibitor. J. Pharm. Sci. 2023, 112, 1897–1907.
  • Kingwascharapong, P.; Tanaka, F.; Koga, A.; Karnjanapratu, S.; Tanaka, F. Effect of Plasticizer Concentration on the Properties of Hydroxypropyl Cellulose (HPC) Film Enhanced with Sodium Dehydroacetate 2023, 23, 1613–1617.
  • Remedio, L. N.; Garcia, V. A. d S.; Rochetti, A. L.; Berretta, A. A.; Yoshida, C. M. P.; Fukumasu, H.; Vanin, F. M.; Carvalho, R. A. d,. Hydroxypropyl Methylcellulose Orally Disintegration Films Produced by Tape Casting with the Incorporation of Green Propolis Ethanolic Extract Using the Printing Technique. Food Hydrocoll. 2023, 135, 108176. DOI: 10.1016/j.foodhyd.2022.108176.
  • Wardana, A. A.; Wigati, L. P.; Tanaka, F.; Tanaka, F. Functional Enhancement of Hydroxypropyl Cellulose‐Based Bionanocomposite Films Incorporating Chitosan Nanoparticles. Int. J. Food Sci. Technol. 2023, 58, 907–920. DOI: 10.1111/ijfs.16071.
  • Cremer, G.; Danthine, S.; Van Hoed, V.; Dombree, A.; Laveaux, A.-S.; Damblon, C.; Karoui, R.; Blecker, C. Variability in the Substitution Pattern of Hydroxypropyl Cellulose Affects Its Physico-Chemical Properties. Heliyon 2023, 9, e13604. DOI: 10.1016/j.heliyon.2023.e13604.
  • Chai, X.; Chai, H.; Wang, X.; Yang, J.; Li, J.; Zhao, Y.; Cai, W.; Tao, T.; Xiang, X. Fused Deposition Modeling (FDM) 3D Printed Tablets for Intragastric Floating Delivery of Domperidone. Sci. Rep. 2017, 7, 2829. DOI: 10.1038/s41598-017-03097-x.
  • Arafat, B.; Wojsz, M.; Isreb, A.; Forbes, R. T.; Isreb, M.; Ahmed, W.; Arafat, T.; Alhnan, M. A. Tablet Fragmentation without a Disintegrant: A Novel Design Approach for Accelerating Disintegration and Drug Release from 3D Printed Cellulosic Tablets. Eur. J. Pharm. Sci. 2018, 118, 191–199. DOI: 10.1016/j.ejps.2018.03.019.
  • Melocchi, A.; Parietti, F.; Loreti, G.; Maroni, A.; Gazzaniga, A.; Zema, L. 3D Printing by Fused Deposition Modeling (FDM) of a Swellable/Erodible Capsular Device for Oral Pulsatile Release of Drugs. J. Drug Deliv. Sci. Technol. 2015, 30, 360–367. DOI: 10.1016/j.jddst.2015.07.016.
  • Dumpa, N. R.; Bandari, S.; Repka, M. A. Novel Gastroretentive Floating Pulsatile Drug Delivery System Produced via Hot-Melt Extrusion and Fused Deposition Modeling 3D Printing. Pharmaceutics 2020, 12, 12. DOI: 10.3390/pharmaceutics12010052.
  • Goyanes, A.; Scarpa, M.; Kamlow, M.; Gaisford, S.; Basit, A. W.; Orlu, M. Patient Acceptability of 3D Printed Medicines. Int. J. Pharm. 2017, 530, 71–78. DOI: 10.1016/j.ijpharm.2017.07.064.
  • Kimura, S.; Ishikawa, T.; Iwao, Y.; Itai, S.; Kondo, H. Fabrication of Zero-Order Sustained-Release Floating Tablets via Fused Depositing Modeling 3D Printer. Chem. Pharm. Bull. (Tokyo) 2019, 67, 992–999. DOI: 10.1248/cpb.c19-00290.
  • Van Nguyen, H.; Nguyen, V. H.; Lee, B. J. Dual Release and Molecular Mechanism of Bilayered Aceclofenac Tablet Using Polymer Mixture. Int. J. Pharm. 2016, 515, 233–244. DOI: 10.1016/j.ijpharm.2016.10.021.
  • Wang, S.; Xie, Y.; Su, H.; Luo, Y.; Wang, M.; Li, T.; Fu, Y. Delivery of Curcumin in a Carboxymethyl Cellulose and Hydroxypropyl Methyl Cellulose Carrier: Physicochemical Properties and Biological Activity. Int. J. Biol. Macromol. 2023, 239, 124203. DOI: 10.1016/j.ijbiomac.2023.124203.
  • Gu, X.; Wang, S.; Liu, J.; Wang, H.; Xu, X.; Wang, Q.; Zhu, Z. Effect of Hydroxypropyl Methyl Cellulose (HPMC) as Foam Stabilizer on the Workability and Pore Structure of Iron Tailings Sand Autoclaved Aerated Concrete. Constr. Build Mater. 2023, 376, 130979. DOI: 10.1016/j.conbuildmat.2023.130979.
  • Shetty, D.; Yarlagadda, D. L.; Brahmam, B.; Dengale, S. J.; Lewis, S. A. Investigating the Influence of the Type of Polymer on Sustaining the Supersaturation from Amorphous Solid Dispersions of Apremilast and Its Pharmacokinetics. J. Drug Deliv. Sci. Technol. 2023, 84, 104520. DOI: 10.1016/j.jddst.2023.104520.
  • Ogbonna, J. I.; Ugorji, L. O.; Ezegbe, C. C.; Mbah, C. C.; Omeh, R. C.; Amadi, B. C.; Ofoefule, S. I. Influence of pH on the Release of a Once Daily Formulation of Ciprofloxacin Tablets Prepared with Different Polymers. Trop. J. Pharm. Res. 2023, 22, 469–476. DOI: 10.4314/tjpr.v22i3.2.
  • Azad, M. A.; Olawuni, D.; Kimbell, G.; Badruddoza, A. Z. M.; Hossain, M.; Sultana, T. Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials–Process Perspective. Pharmaceutics 2020, 12, 124. DOI: 10.3390/pharmaceutics12020124.
  • Bizymis, A.-P.; Giannou, V.; Tzia, C. Contribution of Hydroxypropyl Methylcellulose to the Composite Edible Films and Coatings Properties. Food Bioprocess. Technol. 2023, 16, 1488–1501. DOI: 10.1007/s11947-023-03013-4.
  • Mohammed, A. A.; Algahtani, M. S.; Ahmad, M. Z.; Ahmad, J. Optimization of Semisolid Extrusion (Pressure-Assisted Microsyringe)-Based 3D Printing Process for Advanced Drug Delivery Application. Ann. 3D Print Med. 2021, 2, 100008. DOI: 10.1016/j.stlm.2021.100008.
  • Ilyés, K.; Balogh, A.; Casian, T.; et al. 3D Floating Tablets: Appropriate 3D Design from the Perspective of Different in Vitro Dissolution Testing Methodologies. Vol 567. Elsevier B.V.: United States; 2019.
  • Zhang, J.; Feng, X.; Patil, H.; Tiwari, R. V.; Repka, M. A. Coupling 3D Printing with Hot-Melt Extrusion to Produce Controlled-Release Tablets. Int. J. Pharm. 2017, 519, 186–197. DOI: 10.1016/j.ijpharm.2016.12.049.
  • Zhang, J.; Yang, W.; Vo, A. Q.; Feng, X.; Ye, X.; Kim, D. W.; Repka, M. A. Hydroxypropyl Methylcellulose-Based Controlled Release Dosage by Melt Extrusion and 3D Printing: Structure and Drug Release Correlation. Carbohydr. Polym. 2017, 177, 49–57. DOI: 10.1016/j.carbpol.2017.08.058.
  • Rub, M. A.; Amin, M. R.; Rahman, S.; Asiri, A. M.; Rahman, M. M.; Hoque, M. A.; Alotaibi, M. M.; Khan, M. A. Impacts of Several Salts on the Clouding Development, Nature of Interactions and Associated Physico-Chemical Variables of Mixture of Promethazine Hydrochloride and Conventional Nonionic Surfactant. J. Dispers. Sci. Technol. 2023, 1–10. DOI: 10.1080/01932691.2023.2199840.
  • Xie, C.; Xiong, Q.; Wei, Y.; Li, X.; Hu, J.; He, M.; Wei, S.; Yu, J.; Cheng, S.; Ahmad, M.; et al. Fabrication of Biodegradable Hollow Microsphere Composites Made of Polybutylene Adipate co-Terephthalate/Polyvinylpyrrolidone for Drug Delivery and Sustained Release. Mater. Today Biol. 2023, 20, 100628. DOI: 10.1016/j.mtbio.2023.100628.
  • Feyissa, Z.; Edossa, G. D.; Bedasa, T. B.; Inki, L. G. Fabrication of pH-Responsive Chitosan/Polyvinylpyrrolidone Hydrogels for Controlled Release of Metronidazole and Antibacterial Properties. Int. J. Polym. Sci. 2023, 2023, 1–18. DOI: 10.1155/2023/1205092.
  • Kollamaram, G.; Croker, D. M.; Walker, G. M.; Goyanes, A.; Basit, A. W.; Gaisford, S. Low Temperature Fused Deposition Modeling (FDM) 3D Printing of Thermolabile Drugs. Int. J. Pharm. 2018, 545, 144–152. DOI: 10.1016/j.ijpharm.2018.04.055.
  • Wang, Y.; Genina, N.; Müllertz, A.; Rantanen, J. Coating of Primary Powder Particles Improves the Quality of Binder Jetting 3D Printed Oral Solid Products. J. Pharm. Sci. 2023, 112, 506–512. DOI: 10.1016/j.xphs.2022.08.030.
  • Pepe, Y.; Akkoyun, S.; Bozkurt, B.; Karatay, A.; Ates, A.; Elmali, A. Investigation of the Wavelength Dependent Nonlinear Absorption Mechanisms of Polyvinylpyrrolidone and Cadmium Selenide Hybrid Nanofibers. Opt. Laser Technol. 2023, 164, 109497. DOI: 10.1016/j.optlastec.2023.109497.
  • Song, S.; Wang, C.; Zhang, B.; Sun, C. C.; Lodge, T. P.; Siegel, R. A. A Rheological Approach for Predicting Physical Stability of Amorphous Solid Dispersions. J. Pharm. Sci. 2023, 112, 204–212. DOI: 10.1016/j.xphs.2022.08.028.
  • Attia, M. S.; Elshahat, A.; Hamdy, A.; Fathi, A. M.; Emad-Eldin, M.; Ghazy, F.-E. S.; Chopra, H.; Ibrahim, T. M. Soluplus® as a Solubilizing Excipient for Poorly Water-Soluble Drugs: Recent Advances in Formulation Strategies and Pharmaceutical Product Features. J. Drug Deliv. Sci. Technol. 2023, 84, 104519. DOI: 10.1016/j.jddst.2023.104519.
  • Darwich, M.; Mohylyuk, V.; Kolter, K.; Bodmeier, R.; Dashevskiy, A. Enhancement of Itraconazole Solubility and Release by Hot-Melt Extrusion with Soluplus®. J. Drug Deliv. Sci. Technol. 2023, 81, 104280. DOI: 10.1016/j.jddst.2023.104280.
  • Rani, S.; Mishra, S.; Sharma, M.; Nandy, A.; Mozumdar, S. Solubility and Stability Enhancement of Curcumin in Soluplus® Polymeric Micelles: A Spectroscopic Study. J. Dispers. Sci. Technol. 2020, 41, 523–536. DOI: 10.1080/01932691.2019.1592687.
  • Anwer, M. K.; Ahmed, M. M.; Alshetaili, A.; Almutairy, B. K.; Alalaiwe, A.; Fatima, F.; Ansari, M. N.; Iqbal, M. Preparation of Spray Dried Amorphous Solid Dispersion of Diosmin in Soluplus with Improved Hepato-Renoprotective Activity: In Vitro anti-Oxidant and in-Vivo Safety Studies. J. Drug Deliv. Sci. Technol. 2020, 60, 102101. DOI: 10.1016/j.jddst.2020.102101.
  • Giri, B. R.; Song, E. S.; Kwon, J.; Lee, J. H.; Park, J. B.; Kim, D. W. Fabrication of Intragastric Floating, Controlled Release 3D Printed Theophylline Tablets Using Hot-Melt Extrusion and Fused Deposition Modeling. Pharmaceutics 2020, 12, 12. DOI: 10.3390/pharmaceutics12010077.
  • McDonagh, T.; Belton, P.; Qi, S. An Investigation into the Effects of Geometric Scaling and Pore Structure on Drug Dose and Release of 3D Printed Solid Dosage Forms. Eur. J. Pharm. Biopharm. 2022, 177, 113–125. DOI: 10.1016/j.ejpb.2022.06.013.
  • Ma, Q.; Tang, Y. Molecular Designs of Enhanced Oil Recovery Chemicals. In: Recovery Improvement. Elsevier: Amsterdam; 2023:281–319
  • Abdolmaleki, A.; Salehi, E.; Dinari, M. Dispersion of Graphene Oxide Nanolayers in Novel Heat-Stable Poly (Benzimidazole-Amide) by Ultrasonic Irradiation Route: Synthesis and Characterization. Polym. Technol. Mater. 2023, 62, 76–85. DOI: 10.1080/25740881.2022.2091455.
  • Güney, A.; Gardiner, C.; McCormack, A.; Malda, J.; Grijpma, D. W. Thermoplastic PCL-b-PEG-b-PCL and HDI Polyurethanes for Extrusion-Based 3D-Printing of Tough Hydrogels. Bioengineering 2018, 5, 99. DOI: 10.3390/bioengineering5040099.
  • Das, P.; Nisa, S.; Debnath, A.; Saha, B. Enhanced Adsorptive Removal of Toxic Anionic Dye by Novel Magnetic Polymeric Nanocomposite: Optimization of Process Parameters. J. Dispers. Sci. Technol. 2022, 43, 880–895. DOI: 10.1080/01932691.2020.1845958.
  • Advincula, R. C. Surface Initiated Polymerization from Nanoparticle Surfaces. J. Dispers. Sci. Technol. 2003, 24, 343–361. DOI: 10.1081/DIS-120021794.
  • Khaled, S. A.; Alexander, M. R.; Wildman, R. D.; Wallace, M. J.; Sharpe, S.; Yoo, J.; Roberts, C. J. 3D Extrusion Printing of High Drug Loading Immediate Release Paracetamol Tablets. Int. J. Pharm. 2018, 538, 223–230. DOI: 10.1016/j.ijpharm.2018.01.024.
  • Hussain, A.; Mahmood, F.; Arshad, M. S.; Abbas, N.; Qamar, N.; Mudassir, J.; Farhaj, S.; Nirwan, J. S.; Ghori, M. U. Personalised 3D Printed Fast-Dissolving Tablets for Managing Hypertensive Crisis: In-Vitro/in-Vivo Studies. Polymers (Basel) 2020, 12, 3057. DOI: 10.3390/polym12123057.
  • Ibrahim, M.; Barnes, M.; McMillin, R.; Cook, D. W.; Smith, S.; Halquist, M.; Wijesinghe, D.; Roper, T. D. 3D Printing of Metformin HCl PVA Tablets by Fused Deposition Modeling: Drug Loading, Tablet Design, and Dissolution Studies. AAPS PharmSciTech 2019, 20, 195. DOI: 10.1208/s12249-019-1400-5.
  • Gioumouxouzis, C. I.; Katsamenis, O. L.; Bouropoulos, N.; Fatouros, D. G. 3D Printed Oral Solid Dosage Forms Containing Hydrochlorothiazide for Controlled Drug Delivery. J. Drug Deliv. Sci. Technol. 2017, 40, 164–171. DOI: 10.1016/j.jddst.2017.06.008.
  • Öblom, H.; Zhang, J.; Pimparade, M.; Speer, I.; Preis, M.; Repka, M.; Sandler, N. 3D-Printed Isoniazid Tablets for the Treatment and Prevention of Tuberculosis—Personalized Dosing and Drug Release. AAPS Pharmscitech 2019, 20, 52. DOI: 10.1208/s12249-018-1233-7.
  • Kadry, H.; Al-Hilal, T. A.; Keshavarz, A.; Alam, F.; Xu, C.; Joy, A.; Ahsan, F. Multi-Purposable Filaments of HPMC for 3D Printing of Medications with Tailored Drug Release and Timed-Absorption. Int. J. Pharm. 2018, 544, 285–296. DOI: 10.1016/j.ijpharm.2018.04.010.
  • Isreb, A.; Baj, K.; Wojsz, M.; Isreb, M.; Peak, M.; Alhnan, M. A. 3D Printed Oral Theophylline Doses with Innovative ‘Radiator-Like’design: Impact of Polyethylene Oxide (PEO) Molecular Weight. Int. J. Pharm. 2019, 564, 98–105. DOI: 10.1016/j.ijpharm.2019.04.017.
  • Scoutaris, N.; Ross, S. A.; Douroumis, D. 3D Printed “Starmix” Drug Loaded Dosage Forms for Paediatric Applications. Pharm. Res. 2018, 35, 34. DOI: 10.1007/s11095-017-2284-2.
  • Lamichhane, S.; Park, J. B.; Sohn, D. H.; Lee, S. Customized Novel Design of 3D Printed Pregabalin Tablets for Intra-Gastric Floating and Controlled Release Using Fused Deposition Modeling. Pharmaceutics 2019, 11, 564. DOI: 10.3390/pharmaceutics11110564.
  • Li, Q.; Guan, X.; Cui, M.; Zhu, Z.; Chen, K.; Wen, H.; Jia, D.; Hou, J.; Xu, W.; Yang, X.; et al. Preparation and Investigation of Novel Gastro-Floating Tablets with 3D Extrusion-Based Printing. Int. J. Pharm. 2018, 535, 325–332. DOI: 10.1016/j.ijpharm.2017.10.037.
  • Khaled, S. A.; Burley, J. C.; Alexander, M. R.; Yang, J.; Roberts, C. J. 3D Printing of Tablets Containing Multiple Drugs with Defined Release Profiles. Int. J. Pharm. 2015, 494, 643–650. DOI: 10.1016/j.ijpharm.2015.07.067.
  • Clark, E. A.; Alexander, M. R.; Irvine, D. J.; Roberts, C. J.; Wallace, M. J.; Sharpe, S.; Yoo, J.; Hague, R. J. M.; Tuck, C. J.; Wildman, R. D.; et al. 3D Printing of Tablets Using Inkjet with UV Photoinitiation. Int. J. Pharm. 2017, 529, 523–530. DOI: 10.1016/j.ijpharm.2017.06.085.
  • Goyanes, A.; Buanz, A. B. M.; Basit, A. W.; Gaisford, S. Fused-Filament 3D Printing (3DP) for Fabrication of Tablets. Int. J. Pharm. 2014, 476, 88–92. DOI: 10.1016/j.ijpharm.2014.09.044.
  • Katstra, W. E.; Palazzolo, R. D.; Rowe, C. W.; Giritlioglu, B.; Teung, P.; Cima, M. J. Oral Dosage Forms Fabricated by Three Dimensional Printing(TM). J. Control Release 2000, 66, 1–9. DOI: 10.1016/s0168-3659(99)00225-4.
  • Genina, N.; Boetker, J. P.; Colombo, S.; Harmankaya, N.; Rantanen, J.; Bohr, A. Anti-Tuberculosis Drug Combination for Controlled Oral Delivery Using 3D Printed Compartmental Dosage Forms: From Drug Product Design to in Vivo Testing. J. Control Release 2017, 268, 40–48. DOI: 10.1016/j.jconrel.2017.10.003.
  • Lau, N.-C.; Tsai, M.-H.; Chen, D. W.; Chen, C.-H.; Cheng, K.-W. Preparation and Characterization for Antibacterial Activities of 3D Printing Polyetheretherketone Disks Coated with Various Ratios of Ampicillin and Vancomycin Salts. Appl. Sci. 2020, 10, 97. DOI: 10.3390/app10010097.
  • Yu, D. G.; Yang, X. L.; Huang, W. D.; Liu, J.; Wang, Y. G.; Xu, H. Tablets with Material Gradients Fabricated by Three-Dimensional Printing. J. Pharm. Sci. 2007, 96, 2446–2456. DOI: 10.1002/jps.20864.
  • Goyanes, A.; Buanz, A. B. M.; Hatton, G. B.; Gaisford, S.; Basit, A. W. 3D Printing of Modified-Release Aminosalicylate (4-ASA and 5-ASA) Tablets. Eur. J. Pharm. Biopharm. 2015, 89, 157–162. DOI: 10.1016/j.ejpb.2014.12.003.
  • Khaled, S. A.; Burley, J. C.; Alexander, M. R.; Yang, J.; Roberts, C. J. 3D Printing of Five-in-One Dose Combination Polypill with Defined Immediate and Sustained Release Profiles. J. Control Release 2015, 217, 308–314. DOI: 10.1016/j.jconrel.2015.09.028.
  • Tao, J.; Zhang, J.; Hu, Y.; Yang, Y.; Gou, Z.; Du, T.; Mao, J.; Gou, M. A Conformal Hydrogel Nanocomposite for Local Delivery of Paclitaxel. J. Biomater. Sci. Polym. Ed. 2017, 28, 107–118. DOI: 10.1080/09205063.2016.1250344.
  • Zheng, Y.; Deng, F.; Wang, B.; Wu, Y.; Luo, Q.; Zuo, X.; Liu, X.; Cao, L.; Li, M.; Lu, H.; et al. Melt Extrusion Deposition (MEDTM) 3D Printing Technology–a Paradigm Shift in Design and Development of Modified Release Drug Products. Int. J. Pharm. 2021, 602, 120639. DOI: 10.1016/j.ijpharm.2021.120639.
  • Khaled, S. A.; Burley, J. C.; Alexander, M. R.; Roberts, C. J. Desktop 3D Printing of Controlled Release Pharmaceutical Bilayer Tablets. Int. J. Pharm. 2014, 461, 105–111. DOI: 10.1016/j.ijpharm.2013.11.021.
  • Abbas, N.; Qamar, N.; Hussain, A.; Latif, S.; Arshad, M. S.; Ijaz, Q. A.; Mahmood, F.; Bukhari, N. I. Fabrication of Modified-Release Custom-Designed Ciprofloxacin Tablets via Fused Deposition Modeling 3D Printing. J. 3D Print Med. 2020, 4, 17–27. DOI: 10.2217/3dp-2019-0024.
  • Wang, Z.; Han, X.; Chen, R.; Li, J.; Gao, J.; Zhang, H.; Liu, N.; Gao, X.; Zheng, A. Innovative Color Jet 3D Printing of Levetiracetam Personalized Paediatric Preparations. Asian J. Pharm. Sci. 2021, 16, 374–386. DOI: 10.1016/j.ajps.2021.02.003.
  • Genina, N.; Fors, D.; Palo, M.; Peltonen, J.; Sandler, N. Behavior of Printable Formulations of Loperamide and Caffeine on Different Substrates—Effect of Print Density in Inkjet Printing. Int. J. Pharm. 2013, 453, 488–497. DOI: 10.1016/j.ijpharm.2013.06.003.
  • Jiang, H.; Fu, J.; Li, M.; Wang, S.; Zhuang, B.; Sun, H.; Ge, C.; Feng, B.; Jin, Y. 3D-Printed Wearable Personalized Orthodontic Retainers for Sustained Release of Clonidine Hydrochloride. AAPS PharmSciTech 2019, 20, 260. DOI: 10.1208/s12249-019-1460-6.
  • Genina, N.; Janßen, E. M.; Breitenbach, A.; Breitkreutz, J.; Sandler, N. Evaluation of Different Substrates for Inkjet Printing of Rasagiline Mesylate. Eur. J. Pharm. Biopharm. 2013, 85, 1075–1083. DOI: 10.1016/j.ejpb.2013.03.017.
  • Ghanizadeh Tabriz, A.; Nandi, U.; Hurt, A. P.; Hui, H.-W.; Karki, S.; Gong, Y.; Kumar, S.; Douroumis, D. 3D Printed Bilayer Tablet with Dual Controlled Drug Release for Tuberculosis Treatment. Int. J. Pharm. 2021, 593, 120147. DOI: 10.1016/j.ijpharm.2020.120147.
  • Gioumouxouzis, C. I.; Tzimtzimis, E.; Katsamenis, O. L.; Dourou, A.; Markopoulou, C.; Bouropoulos, N.; Tzetzis, D.; Fatouros, D. G. Fabrication of an Osmotic 3D Printed Solid Dosage Form for Controlled Release of Active Pharmaceutical Ingredients. Eur. J. Pharm. Sci. 2020, 143, 105176. DOI: 10.1016/j.ejps.2019.105176.
  • Hamed, R.; Mohamed, E. M.; Rahman, Z.; Khan, M. A. 3D-Printing of Lopinavir Printlets by Selective Laser Sintering and Quantification of Crystalline Fraction by XRPD-Chemometric Models. Int. J. Pharm. 2021, 592, 120059. DOI: 10.1016/j.ijpharm.2020.120059.
  • Bhatt, U.; Malakar, T. K.; Murty, U. S.; Banerjee, S. 3D Printing of Immediate-Release Tablets Containing Olanzapine by Filaments Extrusion. Drug Dev. Ind. Pharm. 2021, 47, 1200–1208.
  • Li, P.; Jia, H.; Zhang, S.; Yang, Y.; Sun, H.; Wang, H.; Pan, W.; Yin, F.; Yang, X. Thermal Extrusion 3D Printing for the Fabrication of Puerarin Immediate-Release Tablets. AAPS PharmSciTech 2020, 21, 20. DOI: 10.1208/s12249-019-1538-1.
  • Kempin, W.; Domsta, V.; Brecht, I.; Semmling, B.; Tillmann, S.; Weitschies, W.; Seidlitz, A. Development of a Dual Extrusion Printing Technique for an Acid-and Thermo-Labile Drug. Eur. J. Pharm. Sci. 2018, 123, 191–198. DOI: 10.1016/j.ejps.2018.07.041.
  • Krkobabić, M.; Medarević, D.; Pešić, N.; Vasiljević, D.; Ivković, B.; Ibrić, S. Digital Light Processing (DLP) 3D Printing of Atomoxetine Hydrochloride Tablets Using Photoreactive Suspensions. Pharmaceutics 2020, 12, 833. DOI: 10.3390/pharmaceutics12090833.
  • Clark, E. A.; Alexander, M. R.; Irvine, D. J.; Roberts, C. J.; Wallace, M. J.; Yoo, J.; Wildman, R. D. Making Tablets for Delivery of Poorly Soluble Drugs Using Photoinitiated 3D Inkjet Printing. Int. J. Pharm. 2020, 578, 118805. DOI: 10.1016/j.ijpharm.2019.118805.
  • Matijašić, G.; Gretić, M.; Kezerić, K.; Petanjek, J.; Vukelić, E. Preparation of Filaments and the 3D Printing of Dronedarone HCl Tablets for Treating Cardiac Arrhythmias. AAPS PharmSciTech 2019, 20, 310. DOI: 10.1208/s12249-019-1522-9.
  • Vo, A. Q.; Zhang, J.; Nyavanandi, D.; Bandari, S.; Repka, M. A. Hot Melt Extrusion Paired Fused Deposition Modeling 3D Printing to Develop Hydroxypropyl Cellulose Based Floating Tablets of Cinnarizine. Carbohydr. Polym. 2020, 246, 116519. DOI: 10.1016/j.carbpol.2020.116519.
  • Jamróz, W.; Pyteraf, J.; Kurek, M.; Knapik-Kowalczuk, J.; Szafraniec-Szczęsny, J.; Jurkiewicz, K.; Leszczyński, B.; Wróbel, A.; Paluch, M.; Jachowicz, R.; et al. Multivariate Design of 3D Printed Immediate-Release Tablets with Liquid Crystal-Forming Drug—Itraconazole. Materials (Basel) 2020, 13, 4961. DOI: 10.3390/ma13214961.
  • Algahtani, M. S.; Mohammed, A. A.; Ahmad, J.; Abdullah, M. M.; Saleh, E. 3D Printing of Dapagliflozin Containing Self-Nanoemulsifying Tablets: Formulation Design and in Vitro Characterization. Pharmaceutics 2021, 13, 993. DOI: 10.3390/pharmaceutics13070993.
  • Skowyra, J.; Pietrzak, K.; Alhnan, M. A. Fabrication of Extended-Release Patient-Tailored Prednisolone Tablets via Fused Deposition Modelling (FDM) 3D Printing. Eur. J. Pharm. Sci. 2015, 68, 11–17. DOI: 10.1016/j.ejps.2014.11.009.
  • Allahham, N.; Fina, F.; Marcuta, C.; Kraschew, L.; Mohr, W.; Gaisford, S.; Basit, A. W.; Goyanes, A. Selective Laser Sintering 3D Printing of Orally Disintegrating Printlets Containing Ondansetron. Pharmaceutics 2020, 12, 110. DOI: 10.3390/pharmaceutics12020110.
  • Cader, H. K.; Rance, G. A.; Alexander, M. R.; Gonçalves, A. D.; Roberts, C. J.; Tuck, C. J.; Wildman, R. D. Water-Based 3D Inkjet Printing of an Oral Pharmaceutical Dosage Form. Int. J. Pharm. 2019, 564, 359–368. DOI: 10.1016/j.ijpharm.2019.04.026.
  • Jamróz, W.; Kurek, M.; Szafraniec-Szczęsny, J.; Czech, A.; Gawlak, K.; Knapik-Kowalczuk, J.; Leszczyński, B.; Wróbel, A.; Paluch, M.; Jachowicz, R.; et al. Speed It up, Slow It down… an Issue of Bicalutamide Release from 3D Printed Tablets. Eur. J. Pharm. Sci. 2020, 143, 105169. DOI: 10.1016/j.ejps.2019.105169.
  • Goyanes, A.; Allahham, N.; Trenfield, S. J.; Stoyanov, E.; Gaisford, S.; Basit, A. W. Direct Powder Extrusion 3D Printing: Fabrication of Drug Products Using a Novel Single-Step Process. Int. J. Pharm. 2019, 567, 118471. DOI: 10.1016/j.ijpharm.2019.118471.
  • Chen, P.; Luo, H.; Huang, S.; et al. Preparation of High-Drug-Loaded Clarithromycin Gastric-Floating Sustained-Release Tablets Using 3D Printing. AAPS PharmSciTech 2021, 22, 1–10. DOI: 10.1208/s12249-021-01994-z.
  • Ong, J. J.; Awad, A.; Martorana, A.; Gaisford, S.; Stoyanov, E.; Basit, A. W.; Goyanes, A. 3D Printed Opioid Medicines with Alcohol-Resistant and Abuse-Deterrent Properties. Int. J. Pharm. 2020, 579, 119169. DOI: 10.1016/j.ijpharm.2020.119169.
  • Kempin, W.; Domsta, V.; Grathoff, G.; Brecht, I.; Semmling, B.; Tillmann, S.; Weitschies, W.; Seidlitz, A. Immediate Release 3D-Printed Tablets Produced via Fused Deposition Modeling of a Thermo-Sensitive Drug. Pharm. Res. 2018, 35, 124. DOI: 10.1007/s11095-018-2405-6.
  • Buyukgoz, G. G.; Soffer, D.; Defendre, J.; Pizzano, G. M.; Davé, R. N. Exploring Tablet Design Options for Tailoring Drug Release and Dose via Fused Deposition Modeling (FDM) 3D Printing. Int. J. Pharm. 2020, 591, 119987. DOI: 10.1016/j.ijpharm.2020.119987.
  • Gültekin, H. E.; Tort, S.; Acartürk, F. An Effective Technology for the Development of Immediate Release Solid Dosage Forms Containing Low-Dose Drug: Fused Deposition Modeling 3D Printing. Pharm. Res. 2019, 36, 128. DOI: 10.1007/s11095-019-2655-y.
  • Patel, N. G.; Serajuddin, A. T. M. Development of FDM 3D-Printed Tablets with Rapid Drug Release, High Drug-Polymer Miscibility and Reduced Printing Temperature by Applying the Acid-Base Supersolubilization (ABS) Principle. Int. J. Pharm. 2021, 600, 120524. DOI: 10.1016/j.ijpharm.2021.120524.
  • Fanous, M.; Gold, S.; Hirsch, S.; Ogorka, J.; Imanidis, G. Development of Immediate Release (IR) 3D-Printed Oral Dosage Forms with Focus on Industrial Relevance. Eur. J. Pharm. Sci. 2020, 155, 105558. DOI: 10.1016/j.ejps.2020.105558.
  • Conceição, J.; Farto-Vaamonde, X.; Goyanes, A.; Adeoye, O.; Concheiro, A.; Cabral-Marques, H.; Sousa Lobo, J. M.; Alvarez-Lorenzo, C. Hydroxypropyl-β-Cyclodextrin-Based Fast Dissolving Carbamazepine Printlets Prepared by Semisolid Extrusion 3D Printing. Carbohydr. Polym. 2019, 221, 55–62. DOI: 10.1016/j.carbpol.2019.05.084.
  • Fang, D.; Yang, Y.; Cui, M.; Pan, H.; Wang, L.; Li, P.; Wu, W.; Qiao, S.; Pan, W. Three-Dimensional (3D)–Printed Zero-Order Released Platform: A Novel Method of Personalized Dosage Form Design and Manufacturing. AAPS PharmSciTech 2021, 22, 37. DOI: 10.1208/s12249-020-01886-8.
  • Wüst, S.; Müller, R.; Hofmann, S. Controlled Positioning of Cells in Biomaterials—Approaches towards 3D Tissue Printing 2011, 2, 119–154.
  • Bishop, E. S.; Mostafa, S.; Pakvasa, M.; Luu, H. H.; Lee, M. J.; Wolf, J. M.; Ameer, G. A.; He, T.-C.; Reid, R. R. 3-D Bioprinting Technologies in Tissue Engineering and Regenerative Medicine: Current and Future Trends. Genes Dis. 2017, 4, 185–195. DOI: 10.1016/j.gendis.2017.10.002.
  • Gu, Z.; Fu, J.; Lin, H.; He, Y. Development of 3D Bioprinting: From Printing Methods to Biomedical Applications. Asian J. Pharm. Sci. 2020, 15, 529–557. DOI: 10.1016/j.ajps.2019.11.003.
  • Ranjbar, R.; Dehkordi, F. S.; Shahreza, M. H. S.; Rahimi, E. Prevalence, Identification of Virulence Factors, O-Serogroups and Antibiotic Resistance Properties of Shiga-Toxin Producing Escherichia coli Strains Isolated from Raw Milk and Traditional Dairy Products. Antimicrob. Resist. Infect Control. 2018, 7, 53. DOI: 10.1186/s13756-018-0345-x.
  • Marks, L. J.; Michael, J. W. Science, Medicine, and the Future: Artificial Limbs. BMJ 2001, 323, 732–735. DOI: 10.1136/bmj.323.7315.732.
  • Manero, A.; Smith, P.; Sparkman, J.; et al. Implementation of 3D Printing Technology in the Field of Prosthetics: Past, Present, and Future. Int. J. Environ. Res. Public. Health 2019, 16, 1641.
  • Norotte, C.; Marga, F. S.; Niklason, L. E.; Forgacs, G. Scaffold-Free Vascular Tissue Engineering Using Bioprinting. Biomaterials 2009, 30, 5910–5917. DOI: 10.1016/j.biomaterials.2009.06.034.
  • Kumar Malyala, S.; Kumar, R. Y.; Alwala, A. M. A 3D-Printed Osseointegrated Combined Jaw and Dental Implant Prosthesis – a Case Study. RPJ 2017, 23, 1164–1169. DOI: 10.1108/RPJ-10-2016-0166.
  • Rasperini, G.; Pilipchuk, S. P.; Flanagan, C. L.; Park, C. H.; Pagni, G.; Hollister, S. J.; Giannobile, W. V. 3D-Printed Bioresorbable Scaffold for Periodontal Repair. J. Dent Res. 2015, 94, 153S–157S. DOI: 10.1177/0022034515588303.
  • Choudhury, D.; Anand, S.; Naing, M. W. The Arrival of Commercial Bioprinters–towards 3D Bioprinting Revolution!. Int. J. Bioprint. 2018, 4, 139.
  • Schubert, C.; Van Langeveld, M. C.; Donoso, L. A. Innovations in 3D Printing: A 3D Overview from Optics to Organs. Br. J. Ophthalmol. 2014, 98, 159–161. DOI: 10.1136/bjophthalmol-2013-304446.
  • Manoj, A.; Bhuyan, M.; Banik, S. R.; Sankar, M. R. 3D Printing of Nasopharyngeal Swabs for COVID-19 Diagnose: Past and Current Trends. Mater. Today Proc. 2021, 44, 1361–1368. DOI: 10.1016/j.matpr.2020.11.505.
  • Sharafeldin, M.; Davis, J. J. Point of Care Sensors for Infectious Pathogens. Anal. Chem. 2021, 93, 184–197. DOI: 10.1021/acs.analchem.0c04677.
  • Sukato, D. C.; Hammer, D.; Wang, W.; Shokri, T.; Williams, F.; Ducic, Y. Experience with “Jaw in a Day” Technique. J. Craniofac. Surg. 2020, 31, 1212–1217. DOI: 10.1097/SCS.0000000000006369.
  • Konta, A. A.; García-Piña, M.; Serrano, D. R. Personalised 3D Printed Medicines: Which Techniques and Polymers Are More Successful? Bioengineering 2017, 4, 79. DOI: 10.3390/bioengineering4040079.
  • Awad, A.; Yao, A.; Trenfield, S. J.; Goyanes, A.; Gaisford, S.; Basit, A. W. 3D Printed Tablets (Printlets) with Braille and Moon Patterns for Visually Impaired Patients. Pharmaceutics 2020, 12, 172. DOI: 10.3390/pharmaceutics12020172.
  • Basit, A. Recent Innovations in 3D-Printed Personalized Medicines: An Interview with Abdul Basit. J. 3D Print Med. 2020, 4, 5–7. DOI: 10.2217/3dp-2020-0010.
  • Sassolas, A.; Prieto-Simón, B.; Marty, J.-L. Biosensors for Pesticide Detection: New Trends. AJAC 2012, 03, 210–232. DOI: 10.4236/ajac.2012.33030.
  • Kazir, M.; Livney, Y. D. Plant-Based Seafood Analogs. Molecules 2021, 26, 1559. DOI: 10.3390/molecules26061559.
  • Gayler, T.; Sas, C.; Kalnikaite, V. Material Food Probe: Personalized 3D Printed Flavors for Emotional Communication in Intimate Relationships. In Proceedings of the 2020 ACM Designing Interactive Systems Conference.; 2020:965–978.
  • Visscher, L. E.; Cheng, M.; Chhaya, M.; Hintz, M. L.; Schantz, J.-T.; Tran, P.; Ung, O.; Wong, C.; Hutmacher, D. W. Breast Augmentation and Reconstruction from a Regenerative Medicine Point of View: State of the Art and Future Perspectives. Tissue Eng. Part B Rev. 2017, 23, 281–293. DOI: 10.1089/ten.TEB.2016.0303.
  • Khoo, D.; Ung, O.; Blomberger, D.; Hutmacher, D. W. Nipple Reconstruction: A Regenerative Medicine Approach Using 3d-Printed Tissue Scaffolds. Tissue Eng. Part B Rev. 2019, 25, 126–134. DOI: 10.1089/ten.TEB.2018.0253.
  • Pai, M. S. S.; B, M. G.; Moger, M. P.; Mahale, M. P. Application of 3D Printing in Education. IJCATR 2018, 7, 278–280. DOI: 10.7753/IJCATR0707.1006.
  • Alhnan, M. A.; Okwuosa, T. C.; Sadia, M.; Wan, K.-W.; Ahmed, W.; Arafat, B. Emergence of 3D Printed Dosage Forms: Opportunities and Challenges. Pharm. Res. 2016, 33, 1817–1832. DOI: 10.1007/s11095-016-1933-1.
  • Pandey, M.; Choudhury, H.; Fern, J. L. C.; Kee, A. T. K.; Kou, J.; Jing, J. L. J.; Her, H. C.; Yong, H. S.; Ming, H. C.; Bhattamisra, S. K.; Gorain, B. 3D Printing for Oral Drug Delivery: A New Tool to Customize Drug Delivery. Drug Deliv. Transl. Res. 2020, 10, 986–1001. DOI: 10.1007/s13346-020-00737-0.
  • Warsi, M. H.; Yusuf, M.; Al Robaian, M.; Khan, M.; Muheem, A.; Khan, S. 3D Printing Methods for Pharmaceutical Manufacturing: Opportunity and Challenges. Curr. Pharm. Des. 2018, 24, 4949–4956. DOI: 10.2174/1381612825666181206121701.
  • Ahlers, D.; Wasserfall, F.; Hendrich, N.; Zhang, J. 2019 3D Printing of Nonplanar Layers for Smooth Surface Generation. In 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). IEEE; 1737–43. DOI: 10.1109/COASE.2019.8843116.
  • Aksoy, B.; Altaykan‐Hapa, A.; Egemen, D.; Karagöz, F.; Atakan, N. The Impact of Rosacea on Quality of Life: Effects of Demographic and Clinical Characteristics and Various Treatment Modalities. Br. J. Dermatol. 2010, 163, 719–725. DOI: 10.1111/j.1365-2133.2010.09894.x.
  • Mahale, T. R. Three Dimensional Electrophotographic Printing through Layered Manufacturing: An Exploration into Personal Fabrication 2004,
  • Gaidhani, K. A.; Harwalkar, M.; Bhambere, D.; Nirgude, P. S. Lyophilization/Freeze Drying–A Review. World J. Pharm. Res. 2015, 4, 516–543.
  • Tijing, L. D.; Dizon, J. R. C.; Ibrahim, I.; Nisay, A. R. N.; Shon, H. K.; Advincula, R. C. 3D Printing for Membrane Separation, Desalination and Water Treatment. Appl. Mater. Today 2020, 18, 100486. DOI: 10.1016/j.apmt.2019.100486.
  • Zhang, Y.; Xu, Y.; Simon-Masseron, A.; Lalevée, J. Radical Photoinitiation with LEDs and Applications in the 3D Printing of Composites. Chem. Soc. Rev. 2021, 50, 3824–3841. DOI: 10.1039/d0cs01411g.
  • Kariduraganavar, M. Y.; Kittur, A. A.; Kamble, R. R. Polymer Synthesis and Processing. In Natural and Synthetic Biomedical Polymers. Elsevier: Amsterdam, Netherlands; 2014:1–31
  • Ricles, L. M.; Coburn, J. C.; Di Prima, M.; Oh, S. S. Regulating 3D-Printed Medical Products. Sci. Transl. Med. 2018, 10, eaan6521. DOI: 10.1126/scitranslmed.aan6521.
  • Gil, M. I.; Selma, M. V.; Suslow, T.; Jacxsens, L.; Uyttendaele, M.; Allende, A. Pre-and Postharvest Preventive Measures and Intervention Strategies to Control Microbial Food Safety Hazards of Fresh Leafy Vegetables. Crit. Rev. Food Sci. Nutr. 2015, 55, 453–468. DOI: 10.1080/10408398.2012.657808.
  • Lees, F. Lees’ Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control. Butterworth-Heinemann: United Kingdom; 2012.
  • West, T. G.; Bradbury, T. J. 3D Printing: A Case of ZipDose® Technology - World’s First 3D Printing Platform to Obtain FDA Approval for a Pharmaceutical Product. 3D 4D Print Biomed. Appl. 2018, 53–79.
  • Eraliev, O.; Lee, K.-H.; Lee, C.-H. Self-Loosening of a 3D-Printed Bolt by Using Three Different Materials under Cyclical Temperature Changes. Appl. Sci. 2022, 12, 3001. DOI: 10.3390/app12063001.
  • Souto, E. B.; Campos, J. C.; Filho, S. C.; Teixeira, M. C.; Martins-Gomes, C.; Zielinska, A.; Carbone, C.; Silva, A. M. 3D Printing in the Design of Pharmaceutical Dosage Forms. Pharm. Dev. Technol. 2019, 24, 1044–1053. DOI: 10.1080/10837450.2019.1630426.
  • Burdock, G. A.; Carabin, I. G. Generally Recognized as Safe (GRAS): History and Description. Toxicol. Lett. 2004, 150, 3–18. DOI: 10.1016/j.toxlet.2003.07.004.
  • Del Ciello, R. Current Good Manufacturing Practices. In: Good Design Practices for GMP Pharmaceutical Facilities. CRC Press: United Kingdom; 2005:49–66
  • Swartwout, R.; Patidar, R.; Belliveau, E. Predicting Low Toxicity and Scalable Solvent Systems for High‐Speed Roll‐to‐Roll Perovskite Manufacturing. Sol RRL 2022, 6, 2100567. DOI: 10.1002/solr.202100567.
  • Poomathi, N.; Singh, S.; Prakash, C.; et al. 3D Printing in Tissue Engineering: A State of the Art Review of Technologies and Biomaterials. Rapid Prototyp J. 2020, 26, 1313–1334.
  • Choonara, Y. E.; Du Toit, L. C.; Kumar, P.; Kondiah, P. P. D.; Pillay, V. 3D-Printing and the Effect on Medical Costs: A New Era? Expert Rev. Pharmacoecon Outcomes Res. 2016, 16, 23–32. DOI: 10.1586/14737167.2016.1138860.
  • Sharma, S.; Chamoli, N. Machine Learning Approach for Network Intrusion Detection Systems. In An Interdisciplinary Approach to Modern Network Security. CRC Press: United Kingdom; 2022:35–49.
  • Yashodha, G.; Rani, P. R. P.; Lavanya, A.; Sathyavathy, V. 2021 Role of Artificial Intelligence in the Internet of Things–a Review. In: IOP Conference Series: Materials Science and Engineering. 1055. IOP Publishing; 12090. DOI: 10.1088/1757-899X/1055/1/012090.
  • Mahmood, M. A. 3D Printing in Drug Delivery and Biomedical Applications: A State-of-the-Art Review. Compounds 2021, 1, 94–115. DOI: 10.3390/compounds1030009.
  • Nie, J.; He, Y. Integration of Three-Dimensional Printing and Microfluidics. In: Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip. Elsevier: Amsterdam, Netherlands; 2022:385–406
  • Hiltz, S. R. The Virtual Classroom: Learning without Limits via Computer Networks. Intellect Books: United States; 1994.
  • Harmon, P.; King, D. Expert Systems: Artificial Intelligence in Business. John Wiley & Sons, Inc.: New York, NY; 1985.
  • Boydston, A. J.; Cao, B.; Nelson, A.; Ono, R. J.; Saha, A.; Schwartz, J. J.; Thrasher, C. J. Additive Manufacturing with Stimuli-Responsive Materials. J. Mater. Chem. A 2018, 6, 20621–20645. DOI: 10.1039/C8TA07716A.
  • Hossain, F. Machine Learning for Health Informatics in the Field of Diabetics 2019, 13, 148.
  • Elbadawi, M.; Muñiz Castro, B.; Gavins, F. K. H.; Ong, J. J.; Gaisford, S.; Pérez, G.; Basit, A. W.; Cabalar, P.; Goyanes, A. M3DISEEN: A Novel Machine Learning Approach for Predicting the 3D Printability of Medicines. Int. J. Pharm. 2020, 590, 119837. DOI: 10.1016/j.ijpharm.2020.119837.
  • Elbadawi, M.; McCoubrey, L. E.; Gavins, F. K. H.; Ong, J. J.; Goyanes, A.; Gaisford, S.; Basit, A. W. Disrupting 3D Printing of Medicines with Machine Learning. Trends Pharmacol. Sci. 2021, 42, 745–757. DOI: 10.1016/j.tips.2021.06.002.
  • Muñiz Castro, B.; Elbadawi, M.; Ong, J. J.; Pollard, T.; Song, Z.; Gaisford, S.; Pérez, G.; Basit, A. W.; Cabalar, P.; Goyanes, A.; et al. Machine Learning Predicts 3D Printing Performance of over 900 Drug Delivery Systems. J. Control Release 2021, 337, 530–545. DOI: 10.1016/j.jconrel.2021.07.046.
  • Meiabadi, M. S.; Moradi, M.; Karamimoghadam, M.; Ardabili, S.; Bodaghi, M.; Shokri, M.; Mosavi, A. H. Modeling the Producibility of 3D Printing in Polylactic Acid Using Artificial Neural Networks and Fused Filament Fabrication. Polymers (Basel) 2021, 13, 3219. DOI: 10.3390/polym13193219.
  • Wang, Z.; Xiao, X.; Nukavarapu, S.; Kumbar, S.; Rajasekaran, S. Machine Learning Techniques in Structure-Property Optimization of Polymeric Scaffolds for Tissue Engineering. In Proceedings of 14th International Conference. 83. 2022:146–154.
  • Shin, J.; Lee, Y.; Li, Z.; Hu, J.; Park, S. S.; Kim, K. Optimized 3D Bioprinting Technology Based on Machine Learning: A Review of Recent Trends and Advances. Micromachines (Basel) 2022, 13, 363. DOI: 10.3390/mi13030363.
  • Marti, L. printing. 1981.
  • Martin, R. L.; Bowden, N. S.; Merrill, C. 3D Printing in Technology and Engineering Education. Technol. Eng. Teach. 2014, 73, 30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.