32
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of a novel hydrophilic ion-imprinted polymer based on silica-modified magnetic graphene oxide as a sensitive sorbent for the fast separation of silver ions from aqueous media

&
Received 04 Aug 2023, Accepted 09 Dec 2023, Published online: 22 Dec 2023

References

  • Purcell, T. W.; Peters, J. J. Sources of Silver in the Environment. Enviro. Toxic. Chem. 1998, 17, 539–546. DOI: 10.1002/etc.5620170404.
  • Yan, N.; Wang, W.-X. Novel Imaging of Silver Nanoparticle Uptake by a Unicellular Alga and Trophic Transfer to Daphnia Magna. Environ. Sci. Technol. 2021, 55, 5143–5151. DOI: 10.1021/acs.est.0c08588.
  • Kazemi, E.; Haji Shabani, A. M.; Dadfarnia, S. Synthesis and Characterization of a Nanomagnetic Ion Imprinted Polymer for Selective Extraction of Silver Ions from Aqueous Samples. Microchim. Acta 2015, 182, 1025–1033. DOI: 10.1007/s00604-014-1430-3.
  • Behbahani, M.; Omidi, F.; Kakavandi, M. G.; Hesam, G. Selective and Sensitive Determination of Silver Ions at Trace Levels Based on Ultrasonic-Assisted Dispersive Solid-Phase Extraction Using Ion-Imprinted Polymer Nanoparticles. Appl. Organom. Chemis. 2017, 31, 3758–3766. DOI: 10.1002/aoc.3758.
  • Saeki, S.; Kubota, M.; Asami, T. Determination of Silver in Soils by Atomic Absorption Spectrometry. Water. Air. Soil Pollut. 1995, 83, 253–261. DOI: 10.1016/S0003-2670(01)81856-0.
  • Tunçeli, A.; Türker, A. R. Flame Atomic Absorption Spectrometric Determination of Silver after Preconcentration on Amberlite XAD-16 Resin from Thiocyanate Solution. Talanta 2000, 51, 889–894. DOI: 10.1016/S0039-9140(99)00348-3.
  • Rofouei, M. K.; Payehghadr, M.; Shamsipur, M.; Ahmadalinezhad, A. Solid Phase Extraction of Ultra-Traces Silver(I) Using Octadecyl Silica Membrane Disks Modified by 1,3-Bis(2-Cyanobenzene) Triazene(CBT) Ligand Prior to Determination by Flame Atomic Absorption. J. Hazard. Mater. 2009, 168, 1184–1187. DOI: 10.1016/j.jhazmat.2009.02.165.
  • Soylak, M.; Cay, R. S. Separation/Preconcentration of Silver(I) and Lead(II) in Environmental Samples on Cellulose Nitrate Membrane Filter Prior to Their Flame Atomic Absorption Spectrometric Determinations. J. Hazard. Mater. 2007, 146, 142–147. DOI: 10.1016/j.jhazmat.2006.12.005.
  • Aktas, S. Silver Recovery from Spent Silver Oxide Button Cells. Hydrometallurgy 2010, 104, 106–111. DOI: 10.1016/j.hydromet.2010.05.004.
  • Cerjan-Stefanović, Š.; Briški, F.; Kaštelan-Macan, M. Separation of Silver from Waste Waters by Ion-Exchange Resins and Concentration by Microbial Cells. Fresenius. J. Anal. Chem. 1991, 339, 636–639. DOI: 10.1007/BF00325550.
  • Raju, T.; Chung, S. J.; Moon, I. S. Electrochemical Recovery of Silver from Waste Aqueous Ag(I)/Ag(II) Redox Mediator Solution Used in Mediated Electro Oxidation Process. Korean J. Chem. Eng. 2009, 26, 1053–1057. DOI: 10.1007/s11814-009-0175-x.
  • Kiani, G. High Removal Capacity of Silver Ions from Aqueous Solution onto Halloysite Nanotubes. Appl. Clay. Sci. 2014, 90, 159–164. DOI: 10.1016/j.clay.2014.01.010.
  • Conde-González, J. E.; Peña-Méndez, E. M.; Rybáková, S.; Pasán, J.; Ruiz-Pérez, C.; Havel, J. Adsorption of Silver Nanoparticles from Aqueous Solution on Copper Based Metal Organic Frameworks (HKUST-1). Chemosphere 2016, 150, 659–666. DOI: 10.1016/j.chemosphere.2016.02.005.
  • Sun, Y.; Zhang, P.; Zha, Q.; Huang, Y.; Zheng, W.; Yang, C.; Wu, Z. Novel Iminodiacetic Acid Functionalized Basalt Fiber for Adsorption of Cu (II) Ions in Batch Experiments. J. Disper. Sci. Technol. 2021, 44, 317–328. DOI: 10.1080/01932691.2021.1947851.
  • Kang, R.; Qiu, L.; Fang, L.; Yu, R.; Chen, Y.; Lu, X.; Luo, X. A Novel Magnetic and Hydrophilic Ion-Imprinted Polymer as a Selective Sorbent for the Removal of Cobalt Ions from Industrial Wastewater. Environ. Chem. En.g 2016, 4, 2268–2277. DOI: 10.1016/j.jece.2016.04.010.
  • Xing, J.; Li, N.; Liang, Y.; Zh, F. Microwave-Assisted Synthesis of Magnetic Pb(II)-Imprinted-Poly(Schiff Base-co-MAA) for Selective Recognition and Extraction of Pb(II) from Industrial Wastewater. J. Disper. Sci. Technol. 2021, 44, 12–25. DOI: 10.1080/01932691.2021.1930033.
  • Elsalamouny, A. R.; Gamal, R. Fabrication and Characterization of a New Bifunctional Imprinted Polymer as a Selective Receptor for Cobalt Ions from Aqueous Medium. J. Disper. Sci. Technol 2023, 1–11. DOI: 10.1080/01932691.2023.2219328.
  • Shafizadeh, F.; Taghizadeh, M.; Hassanpour, S. Preparation of a Novel Magnetic Pd(II) Ion-Imprinted Polymer for the Fast and Selective Adsorption of Palladium Ions from Aqueous Solutions. Environ. Sci. Pollut. Res. Int. 2019, 26, 18493–18508. DOI: 10.1007/s11356-019-05233-8.
  • Zhang, Y.; Bai, Z.; Luo, W.; Zhai, L.; Wang, B.; Kang, X.; Zong, J. Ion Imprinted Adsorbent for the Removal of Ni(II) from Waste Water: Preparation, Characterization, and Adsorption. J. Disper. Sci. Technol 2019, 40, 1751–1760. DOI: 10.1080/01932691.2018.1538883.
  • Huang, L.; Wang, L.; Gong, L.; Xie, Q.; Chen, N. Preparation, Characterization and Adsorption Characteristics of Diatom-Based Cd(II) Surface Ion-Imprinted Polymer. J. Disper. Sci. Technol 2020, 43, 1321–1332. DOI: 10.1080/01932691.2020.1857260.
  • Beltran, A.; Borrull, F.; Cormack, P. A. G.; Marcé, R. M. Molecularly Imprinted Polymers: Useful Sorbents for Selective Extractions. Trends Anal. Chem. 2010, 29, 1363–1375. DOI: 10.1016/j.trac.2010.07.020.
  • Gallego-Gallegos, M.; Muñoz-Olivas, R.; Cámara, C. Different Formats of Imprinted Polymers for Determining Organotin Compounds in Environmental Samples. J. Environ. Manage. 2009, 90 Suppl 1, S69–S76. DOI: 10.1016/j.jenvman.2008.07.020.
  • Pérez-Moral, N.; Mayes, A. G. Novel MIP Formats. Bioseparation 2001, 10, 287–299. DOI: 10.1023/a:1021504709642.
  • Nicholls, I. A. Thermodynamic Considerations for the Design of and Ligand Recognition by Molecularly Imprinted Polymers. Chem. Lett. 1995, 24, 1035–1036. DOI: 10.1246/cl.1995.1035.
  • Tan, C. J.; Tong, Y. W. Preparation of Superparamagnetic Ribonuclease a Surface-Imprinted Submicrometer Particles for Protein Recognition in Aqueous Media. Anal. Chem. 2007, 79, 299–306. DOI: 10.1021/ac061364y.
  • Huang, R.; Shao, N.; Hou, L.; Zhu, X. Fabrication of an Efficient Surface Ion-Imprinted Polymer Based on Sandwich-Like Graphene Oxide Composite Materials for Fast and Selective Removal of Lead Ions. Colloids Surf. A 2019, 566, 218–228. DOI: 10.1016/j.colsurfa.2019.01.011.
  • Hassanpour, S.; Taghizadeh, M. Rapid and Selective Separation of Molybdenum Ions Using a Novel Magnetic Mo(VI) Ion Imprinted Polymer: A Study of the Adsorption Properties. RSC Adv. 2016, 6, 100248–100261. DOI: 10.1039/C6RA20422H.
  • Taghizadeh, M.; Hassanpour, S. Selective Adsorption of Cr(VI) Ions from Aqueous Solutions Using a Cr(VI)-Imprinted Polymer Supported by Magnetic Multiwall Carbon Nanotubes. Polymer 2017, 132, 1–11. DOI: 10.1016/j.polymer.2017.10.045.
  • Fallah, N.; Taghizadeh, M.; Hassanpour, S. Selective Adsorption of Mo(VI) Ions from Aqueous Solution Using a Surface-Grafted Mo(VI) Ion Imprinted Polymer. Polymer 2018, 144, 80–91. DOI: 10.1016/j.polymer.2018.04.043.
  • Ren, Y. M.; Wei, X. Z.; Zhang, M. L. Adsorption Character for Removal Cu(II) by Magnetic Cu(II) Ion Imprinted Composite Adsorbent. J. Hazard. Mater. 2008, 158, 14–22. DOI: 10.1016/j.jhazmat.2008.01.044.
  • Barati, A.; Kazemi, E.; Dadfarnia, S.; Haji Shabani, A. M. Synthesis/Characterization of Molecular Imprinted Polymer Based on Magnetic Chitosan/Graphene Oxide for Selective Separation/Preconcentration of Fluoxetine from Environmental and Biological Samples. J. Ind. Eng. Chem. 2017, 46, 212–221. DOI: 10.1016/j.jiec.2016.10.033.
  • Sitko, R.; Zawisza, B.; Malicka, E. Graphene as a New Sorbent in Analytical Chemistry. TrAC Trends Anal. Chem. 2013, 51, 33–43. DOI: 10.1016/j.trac.2013.05.011.
  • Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S. M.; Su, X. Adsorption and Removal of Tetracycline Antibiotics from Aqueous Solution by Graphene Oxide. J. Colloid Interface Sci. 2012, 368, 540–546. DOI: 10.1016/j.jcis.2011.11.015.
  • Zawisza, B.; Sitko, R.; Malicka, E.; Talik, E. Graphene Oxide as a Solid Sorbent for the Preconcentration of Cobalt, Nickel, Copper, Zinc and Lead Prior to Determination by Energy-Dispersive X-Ray Fluorescence Spectrometry. Anal. Methods 2013, 5, 6425–6430. DOI: 10.1039/c3ay41451e.
  • Li, Y.; Li, X.; Dong, C.; Qi, J.; Han, X. A Graphene Oxide-Based Molecularly Imprinted Polymer Platform for Detecting Endocrine Disrupting Chemicals. Carbon 2010, 48, 3427–3433. DOI: 10.1016/j.carbon.2010.05.038.
  • Lu, Z.; Yu, J.; Zeng, H.; Liu, Q. Polyamine-Modified Magnetic Graphene Oxide Nanocomposite for Enhanced Selenium Removal. Sep. Purif. Technol. 2017, 183, 249–257. DOI: 10.1016/j.seppur.2017.04.010.
  • Kassaee, M. Z.; Motamedi, E.; Majdi, M. Magnetic Fe3O4-Graphene Oxide/Polystyrene: Fabrication and Characterization of a Promising Nanocomposite. Chem. Eng. J. 2011, 172, 540–549. DOI: 10.1016/j.cej.2011.05.093.
  • Xuan, S.; Wang, Y.-X. J.; Leung, K. C.-F.; Shu, K. Synthesis of Fe3O4@Polyaniline Core/Shell Microspheres with Well Defined Blackberry-Like Morphology. J. Phys. Chem. C 2008, 112, 18804–18809. DOI: 10.1021/jp807124z.
  • Wang, L.; Wang, Z.; Zhou, C.; Song, W.; Sun, C. Potentiometric Microsensor Based on Ion-Imprinted Polymer for the Trace Determination of Cesium(I) Ions. J. Disper. Sci. Technol. 2020, 41, 1095–1103. DOI: 10.1080/01932691.2020.1730886.
  • Zhang, M. L.; Zhang, Z. H.; Liu, Y. N.; Yang, X.; Luo, L. J.; Chen, J. T.; Yao, S. Z. Preparation of Core–Shell Magnetic Ion-Imprinted Polymer for Selective Sxtraction of Pb(II) from Environmental Samples. Chem. Eng. J. 2011, 178, 443–450. DOI: 10.1016/j.cej.2011.10.035.
  • Ma, D.; Guan, J.; Dénommée, S.; Enright, G.; Veres, T.; Simard, B. Multifunctional Nano-Architecture for Biomedical Applications. Chem. Mater. 2006, 18, 1920–1927. DOI: 10.1021/cm052067x.
  • Alcala, M.; Real, C. Synthesis Based on the Wet Impregnation Method and Characterization of Iron and Iron Oxide-Silica Nanocomposites. Solid State Ion. 2006, 177, 955–960. DOI: 10.1016/j.ssi.2006.01.019.
  • Kyzas, G. Z.; Bikiaris, D. N. Characterization of Binding Properties of Silver Ion-Imprinted Polymers with Equilibrium and Kinetic Models. J. Mol. Liq. 2015, 212, 133–141. DOI: 10.1016/j.molliq.2015.09.018.
  • Dadfarnia, S.; Shabani, A. M. H.; Kazemi, E.; Khormizi, S. A. H.; Tammadon, F. Synthesis of Nano-Pore Size Ag(I)-Imprinted Polymer for the Extraction and Preconcentration of Silver Ions Followed by Its Determination with Flame Atomic Absorption Spectrometry and Spectrophotometry Using Localized Surface Plasmon Resonance Peak of Silver Nanoparticles. J. Braz. Chem. 2015, 26, 1180–1190. DOI: 10.5935/0103-5053.20150082.
  • Ghanei-Motlagh, M.; Taher, M. A. Magnetic Silver(I) Ion-Imprinted Polymeric Nanoparticles on a Carbon Paste Electrode for Voltammetric Determination of Silver(I). Microchim. Acta 2017, 184, 1691–1699. DOI: 10.1007/s00604-017-2157-8.
  • Yin, X.; Long, J.; Xi, Y.; Luo, X. B. Recovery of Silver from Wastewater Using a New Magnetic Photocatalytic Ion Imprinted Polymer. ACS Sustainable Chem. Eng. 2017, 5, 2090–2097. DOI: 10.1021/acssuschemeng.6b01871.
  • Hummers, W. S. Jr.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. DOI: 10.1021/ja01539a017.
  • Kazemi, E.; Dadfarnia, S.; Haji Shabani, A. M. Dispersive Solid Phase Microextraction with Magnetic Graphene Oxide as the Sorbent for Separation and Preconcentration of Ultra-Trace Amounts of Gold Ions. Talanta 2015, 141, 273–278. DOI: 10.1016/j.talanta.2015.04.024.
  • Deng, Y.; Qi, D.; Deng, C.; Zhang, X.; Zhao, D. Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. J. Am. Chem. Soc. 2008, 130, 28–29. DOI: 10.1021/ja0777584.
  • Kumar, Y. P.; King, P.; Prasad, V. S. R. K. Adsorption of Zinc from Aqueous Solution Using Marine Green Algae-Ulvafasciatasp. Chem. Eng. J 2007, 129, 161–166. DOI: 10.1016/j.cej.2006.10.023.
  • Azizian, S. Kinetic Models of Sorption: A Theoretical Analysis. J. Colloid Interface Sci. 2004, 276, 47–52. DOI: 10.1016/j.jcis.2004.03.048.
  • Ho, Y. S.; McKay, G. Sorption of Dye from Aqueous Solution by Peat. Chem. Eng. J. 1998, 70, 115–124. DOI: 10.1016/S0923-0467(98)00076-1.
  • Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. DOI: 10.1021/ja02242a004.
  • Webi, T. W.; Chakravort, R. K. Pore and Solid Diffusion Models for Fixed-Bed Adsorbers. AIChE J. 1974, 20, 228–238. DOI: 10.1002/aic.690200204.
  • Freundlich, H. M. F. Uber Die Adsorption in Losungen. Z. Phys. Chem. 1906, 57U, 385–470. DOI: 10.1515/zpch-1907-5723.
  • Frantz, T. S.; Silveira, N.; Quadro, M. S.; Andreazza, R.; Barcelos, A. A.; Cadaval, T. R. S.; Pinto, L. A. A. Cu(II) Adsorption from Copper Mine Water by Chitosan Films and the Matrix Effects. Environ. Sci. Pollut. Res. Int. 2017, 24, 5908–5917. DOI: 10.1007/s11356-016-8344-z.
  • Wei, D.; Li, M.; Wang, X.; Han, F.; Li, L.; Guo, J.; Ai, L.; Fang, L.; Liu, L.; Du, B.; Wei, Q. Extracellular Polymeric Substances for Zn(II) Binding during Its Sorption Process onto Aerobic Granular Sludge. J. Hazard. Mater. 2016, 301, 407–415. DOI: 10.1016/j.jhazmat.2015.09.018.
  • Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets. Carbon 2006, 44, 3342–3347. DOI: 10.1016/j.carbon.2006.06.004.
  • Fan, J.; Liao, D.; Xie, Y.; Zheng, B.; Yu, J.; Cao, Y.; Zhang, X.; Peng, H. A Molecular Imprinted Polymer on the Surface of Superparamagnetic Fe3O4–Graphene Oxide (MIP@Fe3O4@GO) for Simultaneous Recognition and Enrichment of Evodiamine and Rutaecarpine in Evodiaefructus. J. Appl. Poly. Sci. 2017, 134, 44465–44473. DOI: 10.1002/app.44465.
  • Zhan, Y.; Luo, X.; Nie, S.; Huang, Y.; Tu, X.; Luo, S. Selective Separation of Cu(II) from Aqueous Solution with a Novel Cu(II) Surface Magnetic Ion-Imprinted Polymer. Ind. Eng. Chem. Res. 2011, 50, 6355–6361. DOI: 10.1021/ie102177e.
  • Khoddami, N.; Shemirani, F. A New Magnetic Ion-Imprinted Polymer as a Highly Selective Sorbent for Determination of Cobalt in Biological and Environmental Samples. Talanta 2016, 146, 244–252. DOI: 10.1016/j.talanta.2015.08.046.
  • Godlewska-Żyłkiewicz, B.; Leśniewska, B.; Wawreniuk, I. Assessment of Ion Imprinted Polymers Based on Pd(II) Chelate Complexes for Preconcentration and FAAS Determination of Palladium. Talanta 2010, 83, 596–604. DOI: 10.1016/j.talanta.2010.10.005.
  • Ren, Y.; Zhang, M.; Zhao, D. Synthesis and Properties of Magnetic Cu(II) Ion Imprinted Composite Adsorbent for Selective Removal of Copper. Desalination 2008, 228, 135–149. DOI: 10.1016/j.desal.2007.08.013.
  • Wang, X.; Gao, X.; Dong, M.; Zhao, H.; Huang, W. Production of Gasoline Range Hydrocarbons from Methanol on Hierarchical ZSM-5 and Zn/ZSM-5 Catalyst Prepared with Soft Second Template. J. Energy Chem. 2015, 24, 490–496. DOI: 10.1016/j.febslet.2015.01.007.
  • Yao, Y.; Miao, S.; Liu, S.; Ma, L. P.; Sun, H.; Wang, S. Synthesis, Characterization, and Adsorption Properties of Magnetic Fe3O4@Graphene Nanocomposite. Chem. Eng. J 2012, 184, 326–332. DOI: 10.1016/j.cej.2011.12.017.
  • Shen, J.; Hu, Y.; Shi, M.; Li, N.; Ma, H.; Ye, M. One Step Synthesis of Graphene Oxide-Magnetic Nanoparticle Composite. J. Phys. Chem. C 2010, 114, 1498–1503. DOI: 10.1021/jp909756r.
  • Wang, Y.; Liang, S.; Chen, B.; Gu, F.; Yu, S.; Tang, Y. Synergistic Removal of Pb(II), Cd(II) and Humic Acid by Fe3O4@Mesoporous Silica-Graphene Oxide Composites. PLoS One. 2013, 8, e65634. DOI: 10.1371/journal.pone.0065634.
  • Qi, X.; Gao, S.; Ding, G.; Tang, A. N. Synthesis of Surface Cr(VI)-Imprinted Magnetic Nanoparticles for Selective Dispersive Solid Phase Extraction and Determination of Cr(VI) in Water Samples. Talanta 2017, 162, 345–353. DOI: 10.1016/j.talanta.2016.10.040.
  • Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of Copper(II), Chromium(III), Nickel(II) and Lead(II) Ions from Aqueous Solutions by Meranti Sawdust. J. Hazard. Mater. 2009, 170, 969–977. DOI: 10.1016/j.jhazmat.2009.05.066.
  • Şarkaya, K.; Bakhshpour, M.; Denizli, A. Ag+ Ions Imprinted Cryogels for Selective Removal of Silver Ions from Aqueous Solutions. Sep. Sci. Technol. 2018, 54, 2993–3004. DOI: 10.1080/01496395.2018.1556300.
  • Ahamed, M. E. H.; Mbianda, X. Y.; Mulaba-Bafubiandi, A. F.; Marjanovic, L. Ion Imprinted Polymers for the Selective Extraction of Silver(I) Ions in Aqueous Media: Kinetic Modeling and Isotherm Studies. React. Funct. Polym. 2013, 73, 474–483. DOI: 10.1016/j.reactfunctpolym.2012.11.011.
  • Hou, H.; Yu, D.; Hu, G. Preparation and Properties of Ion-Imprinted Hollow Particles for the Selective Adsorption of Silver Ions. Langmuir 2015, 31, 1376–1384. DOI: 10.1021/la5032784.
  • Jalilian, R.; Taheri, A. Synthesis and Application of a Novel Core-Shell Magnetic Ion Imprinted Polymer as a Selective Adsorbent of Trace Amounts of Silver Ions. e-Polymers 2018, 18, 123–134. DOI: 10.1515/epoly-2017-0108.
  • Mirzaei, M.; Hafezi, M. Selective Ion-Imprinted Polymers for Preconcentration and Determination of Silver in Water and Hair by Electrothermal Atomic Absorption Spectrometry. J. Anal. Chem. 2017, 72, 70–75. DOI: 10.1134/S1061934817010087.
  • Shamsipur, M.; Hashemi, B.; Dehdashtian, S.; Mohammadi, M.; Gholivand, M.; Garau, A.; Lippolis, V. Silver Ion Imprinted Polymer Nanobeads Based on a Aza-Thioether Crown Containing a 1,10-Phenanthroline Subunit for Solid Phase Extraction and for Voltammetric and Potentiometric Silver Sensors. Anal. Chim. Acta. 2014, 852, 223–235. DOI: 10.1016/j.aca.2014.09.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.