197
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Methylene blue dye adsorption on Ghana’s activated clay from Teleku Bukazo

, , , , , , & show all
Received 13 Nov 2023, Accepted 28 Dec 2023, Published online: 08 Jan 2024

References

  • Al-Tohamy, R.; Ali, S. S.; Li, F.; Okasha, K. M.; Mahmoud, Y. A.; G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. DOI: 10.1016/j.ecoenv.2021.113160.
  • Kiliç, Z. Water Pollution: Causes, Negative Effects and Prevention Methods. İstanbul Sabahattin Zaim Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021, 3, 129–132. DOI: 10.47769/izufbed.862679.
  • Yasasve, M.; Manjusha, M.; Manojj, D.; Hariharan, N.; Preethi, P. S.; Asaithambi, P.; Karmegam, N.; Saravanan, M. Unravelling the Emerging Carcinogenic Contaminants from Industrial Wastewater for Prospective Remediation by Electrocoagulation–A Review. Chemosphere. 2022, 307, 136017. DOI: 10.1016/j.chemosphere.2022.136017.
  • Nachiyar, C. V.; Rakshi, A.; Sandhya, S.; Jebasta, N. B. D.; Nellore, J. Developments in Treatment Technologies of Dye-Containing Effluent: A Review. Case Stud. Chem. Environ. Eng. 2023, 7, 100339. DOI: 10.1016/j.cscee.2023.100339.
  • Edokpayi, J. N.; Enitan, A. M.; Mutileni, N.; Odiyo, J. O. Evaluation of Water Quality and Human Risk Assessment Due to Heavy Metals in Groundwater around Muledane Area of Vhembe District, Limpopo Province, South Africa. Chem. Cent. J. 2018, 12, 2. DOI: 10.1186/s13065-017-0369-y.
  • Ağtaş, M.; Yılmaz, Ö.; Dilaver, M.; Alp, K.; Koyuncu, I. Hot Water Recovery, and Reuse in Textile Sector with Pilot Scale Ceramic Ultrafiltration/Nanofiltration Membrane System. J. Cleaner Prod. 2020, 256, 120359. DOI: 10.1016/j.jclepro.2020.120359.
  • Agbasi, J.; Chukwu, C.; Nweke, N.; Uwajingba, H.; Khan, M.; Egbueri, J. Water Pollution Indexing, and Health Risk Assessment Due to PTE Ingestion and Dermal Absorption for Nine Human Populations in Southeast Nigeria. Groundw. Sustain. Dev. 2023, 21, 100921. DOI: 10.1016/j.gsd.2023.100921.
  • Russo, T.; Fucile, P.; Giacometti, R.; Sannino, F. Sustainable Removal of Contaminants by Biopolymers: A Novel Approach for Wastewater Treatment. Current State and Future Perspectives. Processes. 2021, 9, 719. DOI: 10.3390/pr9040719.
  • Srivastava, V.; Zare, E. N.; Makvandi, P.; Zheng, X.-Q.; Iftekhar, S.; Wu, A.; Padil, V. V. T.; Mokhtari, B.; Varma, R. S.; Tay, F. R.; Sillanpaa, M. Cytotoxic Aquatic Pollutants and Their Removal by Nanocomposite-Based Sorbents. Chemosphere. 2020, 258, 127324. DOI: 10.1016/j.chemosphere.2020.127324.
  • Yadav, V. B.; Gadi, R.; Kalra, S. Clay-Based Nanocomposites for Removal of Heavy Metals from Water: A Review. J. Environ. Manage. 2019, 232, 803–817. DOI: 10.1016/j.jenvman.2018.11.120.
  • Shahadat, M.; M.; Yasmin; Kumar, S.; Ismail, S.; Ali, S. W.; Ahammad, S. Z. Clay‐Based Adsorbents for the Analysis of Dye Pollutants. Appl. Water Sci. Fundament. Appl. 2021, 1, 163–197. DOI: 10.1002/9781119725237.
  • Hussain, S. T.; Ali, S. A. K. Removal of Heavy Metal by Ion Exchange Using Bentonite Clay. J. Ecol. Eng. 2021, 22, 104–111. DOI: 10.12911/22998993/128865.
  • Shah, K. H.; Ali, S.; Shah, F.; Waseem, M.; Ismail, B.; Khan, R. A.; Khan, A. M.; Khan, A. R. Magnetic Oxide Nanoparticles (Fe3O4) Impregnated Bentonite Clay as a Potential Adsorbent for Cr (III) Adsorption. Mater. Res. Express. 2018, 5, 096102. DOI: 10.1088/2053-1591/aad50e.
  • Oladoye, P. O.; Ajiboye, T. O.; Omotola, E. O.; Oyewola, O. J. Methylene Blue Dye: Toxicity and Potential Technologies for Elimination from (Waste) Water. Results Eng. 2022, 16, 100678. DOI: 10.1016/j.rineng.2022.100678.
  • Khodaie, M.; Ghasemi, N.; Moradi, B.; Rahimi, M. Removal of Methylene Blue from Wastewater by Adsorption onto ZnCl 2 Activated Corn Husk Carbon Equilibrium Studies. J. Chem. 2013, 2013, 1–6. DOI: 10.1155/2013/383985.
  • Fu, J.; Chen, Z.; Wang, M.; Liu, S.; Zhang, J.; Zhang, J.; Han, R.; Xu, Q. Adsorption of Methylene Blue by a High-Efficiency Adsorbent (Polydopamine Microspheres): Kinetics, Isotherm, Thermodynamics, and Mechanism Analysis. Chem. Eng. J. 2015, 259, 53–61. DOI: 10.1016/j.cej.2014.07.101.
  • Egbosiuba, T. C.; Abdulkareem, A. S.; Kovo, A. S.; Afolabi, E. A.; Tijani, J. O.; Auta, M.; Roos, W. D. Ultrasonic Enhanced Adsorption of Methylene Blue onto the Optimized Surface Area of Activated Carbon: Adsorption Isotherm, Kinetics and Thermodynamics. Chem. Eng. Res. Des. 2020, 153, 315–336. DOI: 10.1016/j.cherd.2019.10.016.
  • Kalam, S.; Abu-Khamsin, S. A.; Kamal, M. S.; Patil, S. Surfactant Adsorption Isotherms: A Review. ACS Omega. 2021, 6, 32342–32348. DOI: 10.1021/acsomega.1c04661.
  • Chen, X. Modeling of Experimental Adsorption Isotherm Data. Information. 2015, 6, 14–22. DOI: 10.3390/info6010014.
  • Umpleby, R. J.; II, Baxter, S. C.; Bode, M.; Berch, Jr, J. K.; Shah, R. N.; Shimizu, K. D. Application of the Freundlich Adsorption Isotherm in the Characterization of Molecularly Imprinted Polymers. Anal. Chim. Acta. 2001, 435, 35–42. DOI: 10.1016/S0003-2670(00)01211-3.
  • Skopp, J. Derivation of the Freundlich Adsorption Isotherm from Kinetics. J. Chem. Educ. 2009, 86, 1341. DOI: 10.1021/ed086p1341.
  • Kaczmarski, K. Estimation of Adsorption Isotherm Parameters with Inverse Method—Possible Problems. J. Chromatogr. A. 2007, 1176, 57–68. DOI: 10.1016/j.chroma.2007.08.005.
  • Ismail, B.; Hussain, S. T.; Akram, S. Adsorption of Methylene Blue onto Spinel Magnesium Aluminate Nanoparticles: Adsorption Isotherms, Kinetic and Thermodynamic Studies. Chem. Eng. J. 2013, 219, 395–402. DOI: 10.1016/j.cej.2013.01.034.
  • Viraraghavan, T.; Ramakrishna, K. Fly Ash for Color Removal from Synthetic Dye Solutions. Water Qual. Res. J. 1999, 34, 505–518. DOI: 10.2166/wqrj.1999.024.
  • Jaroniec, M. On Ritchie’s Equation for Adsorption Kinetics of Gases on Solids. React. Kinet. Catal. Lett. 1978, 9, 309–313. DOI: 10.1007/BF02070505.
  • Ho, Y.; McKay, G. Comparative Sorption Kinetic Studies of Dye and Aromatic Compounds onto Fly Ash. J. Environ. Sci. Health, Part A. 1999, 34, 1179–1204. DOI: 10.1080/10934529909376889.
  • Koochakzadeh, F.; Norouzbeigi, R.; Shayesteh, H. Statistically Optimized Sequential Hydrothermal Route for FeTiO3 Surface Modification: Evaluation of Hazardous Cationic Dyes Adsorptive Removal. Environ. Sci. Pollut. Res. Int. 2023, 30, 19167–19181. DOI: 10.1007/s11356-022-23481-z.
  • Weber, W. J.; Jr,.; Morris, J. C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Engrg. Div. 1963, 89, 31–59. DOI: 10.1061/JSEDAI.0000430.
  • Rhim, J.-W.; Wang, L.-F. Preparation and Characterization of Carrageenan-Based Nanocomposite Films Reinforced with Clay Mineral and Silver Nanoparticles. Appl. Clay Sci. 2014, 97-98, 174–181. DOI: 10.1016/j.clay.2014.05.025.
  • Zahidah, K. A.; Kakooei, S.; Ismail, M. C.; Raja, P. B. Halloysite Nanotubes as Nanocontainer for Smart Coating Application: A Review. Prog. Org. Coat. 2017, 111, 175–185. DOI: 10.1016/j.porgcoat.2017.05.018.
  • Chai, J.-B.; Au, P.-I.; Mubarak, N. M.; Khalid, M.; Ng, W. P.-Q.; Jagadish, P.; Walvekar, R.; Abdullah, E. C. Adsorption of Heavy Metal from Industrial Wastewater onto Low-Cost Malaysian Kaolin Clay–Based Adsorbent. Environ. Sci. Pollut. Res. Int. 2020, 27, 13949–13962. DOI: 10.1007/s11356-020-07755-y.
  • Jollands, M. C.; Muir, J.; Padrón-Navarta, J. A.; Demouchy, S. Modelling Hydrogen Mobility in Forsterite as Diffusion Coupled to Inter-Site Reaction. Contrib. Mineral. Petrol. 2022, 177, 98. DOI: 10.1007/s00410-022-01954-1.
  • Acar, M. K.; Altun, T.; Gubbuk, I. Synthesis and Characterization of Silver Doped Magnetic Clay Nanocomposite for Environmental Applications through Effective RhB Degradation. Int. J. Environ. Sci. Technol. 2023, 20, 4219–4234. DOI: 10.1007/s13762-022-04256-y.
  • Chen, T.-C.; Sapitan, J. F. J. F.; Ballesteros, F. C. Jr,.; Lu, M.-C. Using Activated Clay for Adsorption of Sulfone Compounds in Diesel. J. Cleaner Prod. 2016, 124, 378–382. DOI: 10.1016/j.jclepro.2016.03.004.
  • Zhao, Z.; Yang, J.; Zhang, D.; Peng, H. Effects of Wetting and Cyclic Wetting–Drying on Tensile Strength of Sandstone with a Low Clay Mineral Content. Rock Mech. Rock Eng. 2017, 50, 485–491. DOI: 10.1007/s00603-016-1087-9.
  • Khoshdast, H.; Shojaei, V.; Hassanzadeh, A.; Niedoba, T.; Surowiak, A. A Novel Open-System Method for Synthesizing Muscovite from a Biotite-Rich Coal Tailing. Minerals. 2021, 11, 269. DOI: 10.3390/min11030269.
  • Yahaya, S.; Jikan, S. S.; Badarulzaman, N. A.; Adamu, A. D, Universiti Tun Hussein Onn Malaysia. Effects of Acid Treatment on the SEM-EDX Characteristics of Kaolin Clay. PoS. 2017, 3, 4001–4005. DOI: 10.22178/pos.26-6.
  • Sharma, S.; Sarasan, D. G. Influence of Acid Activation on Natural Calcium Montmorillonite Clay. Iosr Jac. 2017, 10, 71–77. DOI: 10.9790/5736-1006027177.
  • Adusei, J. K.; Agorku, E. S.; Voegborlo, R. B.; Ampong, F. K.; Awarikabey, E.; Danu, B. Y.; Amarh, F. A. Zero Valent Iron Impregnated Sodium Alginate Grafted (Acrylamide-Co-Acrylic Acid) Adsorbents for the Removal of Methylene Blue in Aqueous Systems. J. Macromol. Sci. Part B. 2023, 62, 265–279. DOI: 10.1080/00222348.2023.2211376.
  • Siswoyo, E.; Mihara, Y.; Tanaka, S. Determination of Key Components and Adsorption Capacity of a Low-Cost Adsorbent Based on the Sludge of Drinking Water Treatment Plant to Adsorb Cadmium Ion in Water. Appl. Clay Sci. 2014, 97-98, 146–152. DOI: 10.1016/j.clay.2014.05.024.
  • Kaur, S.; Rani, S.; Mahajan, R. K. Adsorption Kinetics for the Removal of Hazardous Dye Congo Red by Biowaste Materials as Adsorbents. J. Chem. 2013, 2013, 1–12. DOI: 10.1155/2013/628582.
  • Danu, B. Y.; Agorku, E. S.; Ampong, F. K.; Awudza, J. A.; Torve, V.; Amponsah, C.; Quaye, R. N.; Ama, O. M.; Osifo, P. O.; Ray, S. S. FeS Encapsulated Chitosan Graft Polyacrylamide Nanocomposite for the Uptake of Model Anionic Eosin Y from Water: Isotherm, Kinetics and Equilibrium Studies. 2020.
  • Ndolomingo, M. J.; Meijboom, R. Determination of the Surface Area and Sizes of Supported Copper Nanoparticles through Organothiol Adsorption—Chemisorption. Appl. Surf. Sci. 2016, 390, 224–235. DOI: 10.1016/j.apsusc.2016.08.080.
  • Bernal, V.; Erto, A.; Giraldo, L.; Moreno-Piraján, J. C. Effect of Solution pH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons. Molecules. 2017, 22, 1032. DOI: 10.3390/molecules22071032.
  • de Figureueiredo Neves, T.; Kushima Assano, P.; Rodrigues Sabino, L.; Bardelin Nunes, W.; Prediger, P. Influence of Adsorbent/Adsorbate Interactions on the Removal of Cationic Surfactants from Water by Graphene Oxide. Water Air Soil Pollut. 2020, 231, 1–22.
  • Almeida, C.; Debacher, N.; Downs, A.; Cottet, L.; Mello, C. Removal of Methylene Blue from Colored Effluents by Adsorption on Montmorillonite Clay. J. Colloid Interf. Sci. 2009, 332, 46–53. DOI: 10.1016/j.jcis.2008.12.012.
  • Baraka, A. Investigation of Temperature Effect on Surface-Interaction and Diffusion of Aqueous-Solution/Porous-Solid Adsorption Systems Using Diffusion–Binding Model. J. Environ. Chem. Eng. 2015, 3, 129–139. DOI: 10.1016/j.jece.2014.11.001.
  • Doğan, M.; Alkan, M.; Türkyilmaz, A.; Ozdemir, Y. Kinetics and Mechanism of Removal of Methylene Blue by Adsorption onto Perlite. J. Hazard. Mater. 2004, 109, 141–148. DOI: 10.1016/j.jhazmat.2004.03.003.
  • Gupta, S. S.; Bhattacharyya, K. G. Kinetics of Adsorption of Metal Ions on Inorganic Materials: A Review. Adv. Colloid Interf. Sci. 2011, 162, 39–58. DOI: 10.1016/j.cis.2010.12.004.
  • Seki, Y.; Yurdakoç, K. Adsorption of Promethazine Hydrochloride with KSF Montmorillonite. Adsorption. 2006, 12, 89–100. DOI: 10.1007/s10450-006-0141-4.
  • Mohanty, K.; Naidu, J. T.; Meikap, B.; Biswas, M. Removal of Crystal Violet from Wastewater by Activated Carbons Prepared from Rice Husk. Ind. Eng. Chem. Res. 2006, 45, 5165–5171. DOI: 10.1021/ie060257r.
  • Ayawei, N.; Ebelegi, A. N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 1–11. DOI: 10.1155/2017/3039817.
  • Rovani, S.; Santos, J. J.; Guilhen, S. N.; Corio, P.; Fungaro, D. A. Fast, Efficient and Clean Adsorption of bisphenol-A Using Renewable Mesoporous Silica Nanoparticles from Sugarcane Waste Ash. RSC Adv. 2020, 10, 27706–27712. DOI: 10.1039/d0ra05198e.
  • Heidarinejad, Z.; Rahmanian, O.; Fazlzadeh, M.; Heidari, M. Enhancement of Methylene Blue Adsorption onto Activated Carbon Prepared from Date Press Cake by Low-Frequency Ultrasound. J. Mol. Liq. 2018, 264, 591–599. DOI: 10.1016/j.molliq.2018.05.100.
  • Saadi, R.; Saadi, Z.; Fazaeli, R.; Fard, N. E. Monolayer and Multilayer Adsorption Isotherm Models for Sorption from Aqueous Media. Korean J. Chem. Eng. 2015, 32, 787–799. DOI: 10.1007/s11814-015-0053-7.
  • Anwar Mohamad Said, K.; Zakirah Ismail, N.; Liyana Jama’in, R.; Ain Mohamed Alipah, N.; Mohamed Sutan, N.; George Gadung, G.; Baini, R.; Syuhada Ahmad Zauzi, N. Application of Freundlich and Temkin Isotherm to Study the Removal of Pb (II) via Adsorption on Activated Carbon Equipped Polysulfone Membrane. IJET. 2018, 7, 91–93. DOI: 10.14419/ijet.v7i3.18.16683.
  • Kokalj, A. A General-Purpose Adsorption Isotherm for Improved Estimation of Standard Adsorption-Free Energy. Corros. Sci. 2023, 217, 111124. DOI: 10.1016/j.corsci.2023.111124.
  • Ugraskan, V.; Isik, B.; Yazici, O. Adsorptive Removal of Methylene Blue from Aqueous Solutions by Porous Boron Carbide: Isotherm, Kinetic and Thermodynamic Studies. Chem. Eng. Commun. 2022, 209, 1111–1129. DOI: 10.1080/00986445.2021.1948406.
  • Ali, R. M.; Hamad, H. A.; Hussein, M. M.; Malash, G. F. Potential of Using Green Adsorbent of Heavy Metal Removal from Aqueous Solutions: Adsorption Kinetics, Isotherm, Thermodynamic, Mechanism and Economic Analysis. Ecol. Eng. 2016, 91, 317–332. DOI: 10.1016/j.ecoleng.2016.03.015.
  • Wang, P.; Cao, M.; Wang, C.; Ao, Y.; Hou, J.; Qian, J. Kinetics and Thermodynamics of Adsorption of Methylene Blue by a Magnetic Graphene-Carbon Nanotube Composite. Appl. Surf. Sci. 2014, 290, 116–124. DOI: 10.1016/j.apsusc.2013.11.010.
  • Han, R.; Zhang, J.; Han, P.; Wang, Y.; Zhao, Z.; Tang, M. Study of Equilibrium, Kinetic and Thermodynamic Parameters about Methylene Blue Adsorption onto Natural Zeolite. Chem. Eng. J. 2009, 145, 496–504. DOI: 10.1016/j.cej.2008.05.003.
  • Othman, N. H.; Alias, N. H.; Shahruddin, M. Z.; Bakar, N. F. A.; Him, N. R. N.; Lau, W. J. Adsorption Kinetics of Methylene Blue Dyes onto Magnetic Graphene Oxide. J. Environ. Chem. Eng. 2018, 6, 2803–2811. DOI: 10.1016/j.jece.2018.04.024.
  • Ahsani-Namin, Z.; Norouzbeigi, R.; Shayesteh, H. Green Mediated Combustion Synthesis of Copper Zinc Oxide Using Eryngium Planum Leaf Extract as a Natural Green Fuel: Excellent Adsorption Capacity towards Congo Red Dye. Ceram. Int. 2022, 48, 20961–20973. DOI: 10.1016/j.ceramint.2022.04.090.
  • Tseng, R.-L.; Tseng, S.-K.; Wu, F.-C. Preparation of High Surface Area Carbons from Corncob with KOH Etching plus CO2 Gasification for the Adsorption of Dyes and Phenols from Water. Colloids Surf. A. 2006, 279, 69–78. DOI: 10.1016/j.colsurfa.2005.12.042.
  • Kangmennaa, A.; Yakubu, H.; Tutuwaa, A.; Agyapong, C. O.; Toku, M.; Agorku, E. S. Methylene Blue Adsorption on Vanadium Pentoxide Nanorods Dispersed in Starch-Grafted Polyacrylonitrile. Int. J. Polym. Anal. Charact. 2023, 28, 697–713. DOI: 10.1080/1023666X.2023.2274661.
  • Patriota, S. N.; Francisco, W.; Araújo, D. F.; Mulholland, D. S. Adsorption of Copper and Methylene Blue on an Agro Waste of Mauritia Flexuosa. J. Environ. Eng. 2020, 146, 04020039. DOI: 10.1061/(ASCE)EE.1943-7870.0001702.
  • Babaei, A. A.; Alavi, S. N.; Akbarifar, M.; Ahmadi, K.; Ramazanpour Esfahani, A.; Kakavandi, B. Experimental and Modeling Study on Adsorption of Cationic Methylene Blue Dye onto Mesoporous Biochars Prepared from Agrowaste. Desalin. Water Treat. 2016, 57, 27199–27212. DOI: 10.1080/19443994.2016.1163736.
  • Hajjaji, M.; El Arfaoui, H. Adsorption of Methylene Blue and Zinc Ions on Raw and Acid-Activated Bentonite from Morocco. Appl. Clay Sci. 2009, 46, 418–421. DOI: 10.1016/j.clay.2009.09.010.
  • Weng, C.-H.; Pan, Y.-F. Adsorption of a Cationic Dye (Methylene Blue) onto Spent Activated Clay. J. Hazard. Mater. 2007, 144, 355–362. DOI: 10.1016/j.jhazmat.2006.09.097.
  • Aygün, A.; Yenisoy-Karakaş, S.; Duman, I. Production of Granular Activated Carbon from Fruit Stones and Nutshells and Evaluation of Their Physical, Chemical and Adsorption Properties. Microporous Mesoporous Mater. 2003, 66, 189–195. DOI: 10.1016/j.micromeso.2003.08.028.
  • Kannan, N.; Sundaram, M. M. Kinetics and Mechanism of Removal of Methylene Blue by Adsorption on Various Carbons—A Comparative Study. Dyes Pigm. 2001, 51, 25–40. DOI: 10.1016/S0143-7208(01)00056-0.
  • Banat, F.; Al-Asheh, S.; Al-Ahmad, R.; Bni-Khalid, F. Bench-Scale and Packed Bed Sorption of Methylene Blue Using Treated Olive Pomace and Charcoal. Bioresour. Technol. 2007, 98, 3017–3025. DOI: 10.1016/j.biortech.2006.10.023.
  • Rao, V. B.; Rao, S. R. M. Adsorption Studies on the Treatment of Textile Dyeing Industrial Effluent by Flyash. Chem. Eng. J. 2006, 116, 77–84.
  • Huang, B.; Zhao, R.; Xu, H.; Deng, J.; Li, W.; Wang, J.; Yang, H.; Zhang, L. Adsorption of Methylene Blue on Bituminous Coal: Adsorption Mechanism and Molecular Simulation. ACS Omega. 2019, 4, 14032–14039. DOI: 10.1021/acsomega.9b01812.
  • Vimonses, V.; Lei, S.; Jin, B.; Chow, C. W.; Saint, C. Kinetic Study and Equilibrium Isotherm Analysis of Congo Red Adsorption by Clay Materials. Chem. Eng. J. 2009, 148, 354–364. DOI: 10.1016/j.cej.2008.09.009.
  • Lorenc-Grabowska, E.; Gryglewicz, G. Adsorption Characteristics of Congo Red on Coal-Based Mesoporous Activated Carbon. Dyes Pigm. 2007, 74, 34–40. DOI: 10.1016/j.dyepig.2006.01.027.
  • Bhattacharyya, K. G.; Sharma, A. Kinetics and Thermodynamics of Methylene Blue Adsorption on Neem (Azadirachta Indica) Leaf Powder. Dyes Pigm. 2005, 65, 51–59. DOI: 10.1016/j.dyepig.2004.06.016.
  • Poots, V.; McKay, G.; Healy, J. Removal of Basic Dye from Effluent Using Wood as an Adsorbent. Journal (Water Pollution Control Federation). 1978, 926–935.
  • Wang, S.; Zhu, Z. Characterisation and Environmental Application of an Australian Natural Zeolite for Basic Dye Removal from Aqueous Solution. J. Hazard. Mater. 2006, 136, 946–952. DOI: 10.1016/j.jhazmat.2006.01.038.
  • Alkan, M.; Demirbaş, Ö.; Doğan, M. Adsorption Kinetics and Thermodynamics of an Anionic Dye onto Sepiolite. Microporous Mesoporous Mater. 2007, 101, 388–396. DOI: 10.1016/j.micromeso.2006.12.007.
  • Mouelhi, M.; Marzouk, I.; Hamrouni, B. Optimization Studies for Water Defluoridation by Adsorption: Application of a Design of Experiments. Desalin. Water Treat. 2016, 57, 9889–9899. DOI: 10.1080/19443994.2015.1032363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.