76
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of betaine surfactant and its application in microemulsion flushing fluid

, , &
Received 15 Sep 2023, Accepted 24 Feb 2024, Published online: 07 Mar 2024

References

  • Lu, B. P.; Ding, S. D. New Progress and Development Prospect in Shale Gas Engineering Technologies of Sinopec. Petroleum Drilling Tech. 2018, 46, 1–6. DOI: 10.11911/syztjs.2018001.
  • Li, M.; Xie, D. B.; Shu, Q. G.; Ou, H. J.; Guo, X. Y. Study on Sodium Fatty Alcohol Polyoxyethyleneether Sulfate Relieve the Contamination of Oil Well Cement with Mineral Oil-Based Drilling Fluids. Constr. Build. Mater. 2018, 163, 450–459. DOI: 10.1016/j.conbuildmat.2017.12.109.
  • Curbelo, F. D. S.; Garnica, A. I. C.; Araújo, E. A.; Paiva, E. M.; Cabral, A. G.; Araújo, E. A.; Freitas, J. C. O. Vegetable Oil-Based Preflush Fluid in Well Cementing. J. Petroleum Sci. Eng. 2018, 170, 392–399. DOI: 10.1016/j.petrol.2018.06.061.
  • See, C. H.; Saphanuchart, W.; Nadarajan, S.; Lim, C. N. 2011 NanoEmulsion for Non-Aqueous Mud Removal in Wellbore. SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition. DOI: 10.2118/149088-MS.
  • Li, M.; Ou, H. J.; Li, Z. Y.; Gu, T.; Liu, H. H.; Guo, X. Y. Contamination of Cement Slurries with Diesel-Based Drilling Fluids in a Shale Gas Well. J. Nat. Gas Sci. Eng. 2015, 27, 1312–1320. DOI: 10.1016/j.jngse.2015.08.010.
  • Plank, J.; Tiemeyer, C.; Buelichen, D.; Echt, T. 2014. A Study of Cement/Mudcake/Formation Interfaces and Their Impact on the Sealing Quality of Oilwell Cement. IADC/SPE Asia Pacific Drilling Technology Conference. DOI: 10.2118/170452-MS.
  • Lichinga, K. N.; Maagi, M. T.; Wang, Q. G.; Hao, H. Y.; Gu, J. Experimental Study on Oil Based Mudcake Removal and Enhancement of Shear Bond Strength at Cement-Formation Interface. J. Petroleum Sci. Eng. 2019, 176, 754–761. DOI: 10.1016/j.petrol.2019.01.066.
  • Agbasimalo, N.; Radonjic, M. Experimental Study of the Impact of Drilling Fluid Contamination on the Integrity of Cement–Formation Interface. J. Energy Res. Tech. 2014, 136(4), 1–5. DOI: 10.1115/1.4027566.
  • Budiawan, A.; Farahani, H. S.; Anugrah, A.; Brandl, A. 2014. Innovative Cement Spacer Improves Well Cementing Integrity – 60 Case Histories Reviewed. IADC/SPE Asia Pacific Drilling Technology Conference. DOI: 10.2118/170545-MS.
  • Cheng, X. W.; Liu, K. Q.; Zhang, X. G.; Li, Z. Y.; Guo, X. Y. Integrity Changes of Cement Sheath Due to Contamination by Drilling Fluid. Adv. Cem. Res. 2018, 30, 47–55. DOI: 10.1680/jadcr.16.00121.
  • Hao, H. Y.; Gu, J.; Huang, J.; Wang, Z. W.; Wang, Q. G.; Zou, Y. K.; Wang, W. L. Comparative Study on Cementation of Cement-Mud Cake Interface With and Without Mud-Cake-Solidification-Agents Application in Oil & Gas Wells. J. Petroleum Sci. Eng. 2016, 147, 143–153. DOI: 10.1016/j.petrol.2016.05.014.
  • Li, L.; Alegria, A.; Doan, A. A.; Kellum, M. G.; Hughes, B. 2016. A Novel Spacer System to Prevent Lost Circulation in Cementing Applications. Proceedings of the 2016 AADE Fluids Technical Conference and Exhibition.
  • Wang, J. P.; Xiong, Y. M.; Lu, Z. Y.; Zhang, W.; Wu, J. W.; Wei, R. H.; Li, X. X. Evaluation of Flushing Ability of Cementing Flushing Fluids. ACS Omega. 2021, 6, 28955–28966. DOI: 10.1021/acsomega.1c04009.
  • Li, J.; Huang, S.; Li, Z. Y.; Liu, J.; Wu, X. N.; Su, D. H.; Song, W. T. Filter Cake Removal during the Cementing and Completion Stages in CO2 Storage Wells: Current Developments, Challenges, and Prospects. Energy Tech. 2022, 10(6), 2101134. DOI: 10.1002/ente.202101134.
  • Lichinga, K. N.; Maagi, M. T.; Ntawanga, A. C.; Hao, H. Y.; Gu, J. A Novel Preflush to Improve Shear Bond Strength at Cement-Formation Interface and Zonal Isolation. J. Petroleum Sci. Eng. 2020, 195, 107821. DOI: 10.1016/j.petrol.2020.107821.
  • Wang, C. W.; Meng, R. Z.; Xiao, F. F.; Wang, R. H. Use of Nanoemulsion for Effective Removal of Both Oil-Based Drilling Fluid and Filter Cake. J. Nat. Gas Sci. Eng. 2016, 36, 328–338. DOI: 10.1016/j.jngse.2016.10.035.
  • Pernites, R.; Padilla, F.; Clark, J.; Gonzalez, A.; Fu, D. K. 2018. Novel and High Performing Wellbore Cleaning Fluids with Surprisingly Flat Viscosity over Time and Different Temperatures. SPE Western Regional Meeting. DOI: 10.2118/190146-MS.
  • Wang, H.; Liu, X. B.; Geng, T.; Li, H. K.; Sun, D. J. Functioning Mechanism of and Research Progress in Micro Emulsion Flushing Fluid Used in Oil Base Mud Drilling. Drilling Fluid Compl. Fluid. 2015, 32, 96–100. DOI: 10.3969/j.issn.1001-5620.2015.04.026.
  • Wanderley Neto, A. O.; Da Silva, V. L.; Rodrigues, D. V.; Ribeiro, L. S.; Nunes da Silva, D. N.; De Oilveira Freitas, J. C. A Novel Oil-in-Water Microemulsion as a Cementation Flushing Fluid for Removing Non-Aqueous Filter Cake. J. Petroleum Sci. Eng. 2020, 184, 106536. DOI: 10.1016/j.petrol.2019.106536.
  • Schneider, K.; M.; Ott, T.; Schweins, R.; Frielinghaus, H.; Lade, O.; Sottmann, T. Phase Behavior and Microstructure of Symmetric Nonionic Microemulsions with Long-Chain n-Alkanes and Waxes. Ind. Eng. Chem. Res. 2019, 58, 2583–2595. DOI: 10.1021/acs.iecr.8b04833.
  • Pal, N.; Kumar, S.; Bera, A.; Mandal, A. Phase Behaviour and Characterization of Microemulsion Stabilized by a Novel Synthesized Surfactant: Implications for Enhanced Oil Recovery. Fuel. 2019, 235, 995–1009. DOI: 10.1016/j.fuel.2018.08.100.
  • Zhu, T. Y.; Kang, W. L.; Yang, H. B.; Li, Z.; Zhou, B. B.; He, Y. Q.; Wang, J. Q.; Aidarova, S.; Sarsenbekuly, B. Advances of Microemulsion and Its Applications for Improved Oil Recovery. Adv. Colloid Interf. Sci. 2022, 299, 102527. DOI: 10.1016/j.cis.2021.102527.
  • Bardhan, S.; Kundu, K.; Chakraborty, G.; Saha, S. K.; Paul, B. K. The Schulman Method of Cosurfactant Titration of the Oil/Water Interface (Dilution Method): a Review on a Well-Known Powerful Technique in Interfacial Science for Characterization of Water-in-Oil Microemulsions. J. Surfact. Detergents. 2018, 18, 547–567. DOI: 10.1007/s11743-015-1694-6.
  • Tartaro, G.; Mateos, H.; Schirone, D.; Angelico, R.; Palazzo, G. Microemulsion Microstructure(s): A Tutorial Review. Nanomaterials. 2020, 10, 1657. DOI: 10.3390/nano10091657.
  • Dantas, T. N. C.; Moura, M. C. P. A.; Neto, A. A. D.; Pinheiro, F. S. H. T.; Neto, E. L. B. The Use of Microemulsion and Flushing Solutions to Remediate Diesel-Polluted Soil. Brazilian J. Petroleum Gas. 2007, 1, 26–33. DOI: http://www.portalabpg.org.br/bjpg/index.php/bjpg/article/view/5.
  • Quintero, L.; Jones, T. A.; Pietrangeli, G. 2011. Phase Boundaries of Microemulsion Systems Help to Increase Productivity. SPE European Formation Damage Conference. DOI: 10.2118/144209-MS.
  • Brege, J.; El Sherbeny, W.; Quintero, L.; Jones, T. 2012. Using Microemulsion Technology to Remove Oil-Based Mud in Wellbore Displacement and Remediation Applications. SPE North Africa Technical Conference and Exhibition. DOI: 10.2118/150237-MS.
  • Jeirani, Z.; Jan, B. M.; Ali, B. S.; See, C. H.; Saphanuchart, W. Pre-Prepared Microemulsion Flooding in Enhanced Oil Recovery: A Review. Pet. Sci. Technol. 2014, 32, 180–193. DOI: 10.1080/10916466.2011.586968.
  • Tongcumpou, C.; Acosta, E. J.; Quencer, L. B.; Joseph, A. F.; Scamehorn, J. F.; Sabatini, D. A.; Chavadej, S.; Yanumet, N. Microemulsion Formation and Detergency with Oily Soils: I. Phase Behavior and Interfacial Tension. J. Surfact Detergents. 2003, 6, 191–203. DOI: 10.1007/s11743-003-0262-5.
  • Chang, L.; Pope, G. A.; Jang, S. H.; Tagavifar, M. Prediction of Microemulsion Phase Behavior from Surfactant and Co-Solvent Structures. Fuel. 2019, 237, 494–514. DOI: 10.1016/j.fuel.2018.09.151.
  • da Silva, D. C.; Araújo, C. R. B. D.; Oliveira Freitas, J. C. D.; Rodrigues, M. A. F.; Wanderley Neto; A. D. O. Formulation of New Microemulsion Systems Containing Produced Water for Removal of Filter Cake from Olefin-Based Drilling Fluid. J. Petroleum Sci. Eng. 2020, 193, 107425. DOI: 10.1016/j.petrol.2020.107425.
  • Li, N.; Zhang, G. C.; Ge, J. J.; Zhang, L.; Ling, X. N.; Wang, J. Ultra-Low Interfacial Tension between Heavy Oil and Betaine-Type Amphoteric Surfactants. J. Dispersion Sci. Technol. 2012, 33, 258–264. DOI: 10.1080/01932691.2011.561177.
  • Liu, X. M.; Chen, Z.; Cui, Z. G. Synergistic Effects between Anionic and Sulfobetaine Surfactants for Stabilization of Foams Tolerant to Crude Oil in Foam Flooding. J. Surfact Detergents. 2021, 24, 683–696. DOI: 10.1002/jsde.12501.
  • Qiao, W. H.; Cui, Y. H.; Zhu, Y. Y.; Cai, H. Y. Dynamic Interfacial Tension Behaviors between Guerbet Betaine Surfactants Solution and Daqing Crude Oil. Fuel. 2012, 102, 746–750. DOI: 10.1016/j.fuel.2012.05.046.
  • Zhu, H. Y.; Yin, J. Z. Study on Cloud Point Pressure of [Emim][Tf2N] in Supercritical Carbon Dioxide Microemulsions Based on Non-Ionic Surfactant and Role of Solubilized Water. J. Mol. Liq. 2020, 310, 113299. DOI: 10.1016/j.molliq.2020.113299.
  • Kamal, M. S.; Hussein, I. A.; Sultan, A. S. Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications. Energy Fuels. 2017, 31, 7701–7720. DOI: 10.1021/acs.energyfuels.7b00353.
  • Zhong, Q. L.; Cao, X. L.; Zhu, Y. W.; Ma, B. D.; Xu, Z. C.; Zhang, L.; Ma, G. Y.; Zhang, L. Studies on Interfacial Tensions of Betaine and Anionic-Nonionic Surfactant Mixed Solutions. J. Mol. Liq. 2020, 311, 113262. DOI: 10.1016/j.molliq.2020.113262.
  • Yaseen, M.; Lu, J. R.; Webster, J. R. P.; Penfold, J. The Structure of Zwitterionic Phosphocholine Surfactant Monolayers. Langmuir. 2006, 22, 5825–5832. DOI: 10.1021/la053316z.
  • Del Mar Graciani, M.; Rodríguez, A.; Muñoz, M.; Moyá, M. L. Surfactants in Water-Ethylene Glycol Mixtures: Surface Tension, Fluorescence, Spectroscopic, Conductometric, and Kinetic Studies. Langmuir. 2005, 21, 7161–7169. DOI: 10.1021/la050862j.
  • Guan, J. Q.; Tung, C. H.; Li, G. Z. Modification of Alkylbetaine by Incorporation of Hydroxypropyl Group: Preparation, Surface Activity, and Biodegradability of N-Alkoxy-Hydroxypropyl-N, N-Dimethyl-Glycine Betaine Surfactants. J. Dispersion Sci. Technol. 1998, 19, 63–76. DOI: 10.1080/01932699808913161.
  • Zhou, M.; Bu, J. C.; Ma, Y.; Zou, J. X.; Fu, H.; Yang, F. R. Synthesis of New Sulfobetaine Gemini Surfactants with Hydroxyls and Their Effects on Surface-Active Properties. J. Surfact Detergents. 2018, 21, 867–877. DOI: 10.1002/jsde.12201.
  • Lu, J.; Pu, W.; He, W.; Zou, B.; Li, B.; Liu, R. Progress in Research of Sulfobetaine Surfactants Used in Tertiary Oil Recovery. J. Surfact Detergents. 2023, 26, 459–475. DOI: 10.1002/jsde.12651.
  • Kelleppan, V. T.; King, J. P.; Butler, Calum, S. G.; Williams, A. P.; Tuck, K. L.; Tabor, R. F. Heads or Tails? The Synthesis, Self-Assembly, Properties and Uses of Betaine and Betaine-like Surfactants. Adv. Colloid Interf. Sci. 2021, 297, 102528. DOI: 10.1016/j.cis.2021.102528.
  • Mariyate, J.; Bera, A. A Critical Review on Selection of Microemulsions or Nanoemulsions for Enhanced Oil Recovery. J. Mol. Liq. 2022, 353, 118791. DOI: 10.1016/j.molliq.2022.118791.
  • Yuan, B.; Yang, S.; Xu, B. H.; Zeng, S. P.; Li, P. C. Novel Evaluation Method for Flushing Efficiency Based on the Principle of Wall Shear Rate Equality under High Temperature and High Pressure. ACS Omega. 2022, 7, 38796–38810. DOI: 10.1021/acsomega.2c04463.
  • Tong, K.; Zhao, C. H.; Sun, Z. C.; Sun, D. J. Formation of Concentrated Nanoemulsion by W/O Microemulsion Dilution Method: Biodiesel, Tween 80, and Water System. ACS Sustain. Chem. Eng. 2015, 3, 3299–3306. DOI: 10.1021/acssuschemeng.5b00903.
  • Feng, Q.; Zhong, M. J.; Liu, H.; Liu, X. J.; Peng, Z. G. Preparation, Investigation and Characterization of Microemulsion Used in Cleaning Waste Liquid and Drilling Cuttings. Energy Source, Part A: Recovery, Utilization Environ. Effects. 2020, 42, 919–929. DOI: 10.1080/15567036.2019.1602204.
  • Jiang, G. B.; Li, J.; Yu, J. L.; Jiang, H. S.; Li, H.; Xu, B.; Zhao, L.; Wang, H. J. Research on the Influencing Factors and Mechanism of Single-Phase Microemulsion Cleaning of Shale Gas Oil-Based Cuttings. Environ. Technol. 2022, 43, 2530–2539. DOI: 10.1080/09593330.2021.1884902.
  • Wang, J.; Xiong, Y.; Wu, B.; Lu, Z.; Li, X.; Zhang, Z. Study on Reasonable Amount of Flushing Fluid and Flushing Time. Energies. 2020, 13, 4483. DOI: 10.3390/en13174483.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.