46
Views
0
CrossRef citations to date
0
Altmetric
Research Article

pH and temperature dual-responsive hollow mesoporous silica nanoparticles for drug encapsulation and delivery

, , , , &
Received 20 Nov 2023, Accepted 13 Apr 2024, Published online: 20 May 2024

References

  • Chen, C.; Sun, W.; Yao, W.-J.; Wang, Y.-B.; Ying, H.-J.; Wang, P. Functional Polymeric Dialdehyde Dextrin Network Capped Mesoporous Silica Nanoparticles for pH/GSH Dual-Controlled Drug Release. RSC Adv. 2018, 8, 20862–20871. DOI: 10.1039/c8ra03163k.
  • Liechty, W. B.; Peppas, N. A. Expert Opinion: Responsive Polymer Nanoparticles in Cancer Therapy. Eur. J. Pharm. Biopharm. 2012, 80, 241–246. DOI: 10.1016/j.ejpb.2011.08.004.
  • Maeda, H.; Nakamura, H.; Fang, J. The EPR Effect for Macromolecular Drug Delivery to Solid Tumors: Improvement of Tumor Uptake, Lowering of Systemic Toxicity, and Distinct Tumor Imaging in Vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79. DOI: 10.1016/j.addr.2012.10.002.
  • Zhang, Q.; Wang, X.-L.; Li, P.-Z.; Nguyen, K. T.; Wang, X.-J.; Luo, Z.; Zhang, H.-C.; Tan, N. S.; Zhao, Y.-L. Biocompatible, Uniform, and Redispersible Mesoporous Silica Nanoparticles for Cancer-Targeted Drug Delivery in Vivo. Adv. Funct. Mater. 2014, 24, 2450–2461. DOI: 10.1002/adfm.201302988.
  • Wang, S.-S.; Wu, W.; Liu, Y.; Wang, C.-H.; Xu, Q.; Lv, Q.-Z.; Huang, R.-Q.; Li, X.-Y. Targeted Peptide-Modified Oxidized Mesoporous Carbon Nanospheres for Chemo-Thermo Combined Therapy of Ovarian Cancer in Vitro. Drug Deliv. 2022, 29, 1947–1952. DOI: 10.1080/10717544.2022.2089298.
  • Raj, R.; Pinto, S. N.; Crucho, C. I. C.; Das, S.; Baleizão, C.; Farinha, J. P. S. Optically Traceable PLGA-Silica Nanoparticles for Cell-Triggered Doxorubicin Delivery. Colloids Surf. B Biointerfaces 2022, 220, 112872. DOI: 10.1016/j.colsurfb.2022.112872.
  • Kim, S.; Kim, J. Y.; Huh, K. M.; Acharya, G.; Park, K. Hydrotropic Polymer Micelles Containing Acrylic Acid Moieties for Oral Delivery of Paclitaxel. J. Control. Release 2008, 132, 222–229. DOI: 10.1016/j.jconrel.2008.07.004.
  • Tian, Y.; Bromberg, L.; Lin, S.-N.; Hatton, T. A.; Tam, K. C. Complexation and Release of Doxorubicin from Its Complexes with Pluronic P85-b-Poly(Acrylic Acid) Block Copolymers. J. Control. Release 2007, 121, 137–145. DOI: 10.1016/j.jconrel.2007.05.010.
  • Yi, X.-Q.; Zeng, W.-J.; Wang, C.; Chen, Y.; Zheng, L.-Y.; Zhu, X.-L.; Kuang, Y.; Huang, Q.-T.; Ke, Y.-Q.; He, X.-Y. A Step-by-Step Multiple Stimuli-Responsive Metal-Phenolic Network Prodrug Nanoparticles for Chemotherapy. Nano Res. 2021, 15, 1205–1212. DOI: 10.1007/s12274-021-3626-2.
  • Pérez-Garnes, M.; Gutiérrez-Salmerón, M.; Morales, V.; Chocarro-Calvo, A.; Sanz, R.; GarcíaJiménez, C.; García-Muñoz, R. A. Engineering Hollow Mesoporous Silica Nanoparticles to Increase Cytotoxicity. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 112, 110935. DOI: 10.1016/j.msec.2020.110935.
  • Liu, J.; Liu, T.; Pan, J.; Liu, S.; Lu, G.-Q.-M. Advances in Multicompartment Mesoporous Silica Micro/Nanoparticles for Theranostic Applications. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 389–411. DOI: 10.1146/annurev-chembioeng-060817-084225.
  • Li, Y.-S.; Shi, J.-L. Hollow-Structured Mesoporous Materials: Chemical Synthesis, Functionalization and Applications. Adv. Mater. 2014, 26, 3176–3205. DOI: 10.1002/adma.201305319.
  • Park, S. S.; Ha, C. S. Hollow Mesoporous Functional Hybrid Materials: Fascinating Platforms for Advanced Applications. Adv. Funct. Mater. 2018, 28, 1703814. DOI: 10.1002/adfm.201703814.
  • Pontón, I.; Martí del Rio, A.; Gómez Gómez, M.; Sánchez-García, D. Preparation and Applications of Organo-Silica Hybrid Mesoporous Silica Nanoparticles for the Co-Delivery of Drugs and Nucleic Acids. Nanomaterials (Basel) 2020, 10, 2466. DOI: 10.3390/nano10122466.
  • Mochizuki, C.; Nakamura, J.; Nakamura, M. Development of Non-Porous Silica Nanoparticles towards Cancer Photo-Theranostics. Biomedicines 2021, 9, 73. DOI: 10.3390/biomedicines9010073.
  • Shi, Q.; Wu, K.; Huang, X.-Y.; Xu, R.; Zhang, W.; Bai, J.; Du, S.-Y.; Han, N. Tannic Acid/Fe3+ Complex Coated Mesoporous Silica Nanoparticles for Controlled Drug Release and Combined Chemo-Photothermal Therapy. Colloids Surf. A 2021, 618, 126475. DOI: 10.1016/j.colsurfa.2021.126475.
  • Rosenkrans, Z. T.; Ferreira, C. A.; Ni, D.; Cai, W. Internally Responsive Nanomaterials for Activatable Multimodal Imaging of Cancer. Adv. Healthc. Mater. 2021, 10, e2000690. DOI: 10.1002/adhm.202000690.
  • Stoffelen, C.; Voskuhl, J.; Jonkheijm, P.; Huskens, J. Dual Stimuli-Responsive Self-Assembled Supramolecular Nanoparticles. Angew. Chem. Int. Ed. Engl. 2014, 53, 3400–3404. DOI: 10.1002/anie.201310829.
  • Wang, S.-C.; Zhou, Q.-Q.; Yu, S.-L.; Zhao, S.; Shi, J.-H.; Yuan, J.-T. Rod-Like Hybrid Nanomaterial with Tumor Targeting and pH-Responsive for Cancer Chemo/Photothermal Synergistic Therapy. J. Nanobiotechnol. 2022, 20, 332. DOI: 10.1186/s12951-022-01527-1.
  • Zhang, H.-X.; Song, F.-F.; Dong, C.-H.; Yu, L.-D.; Chang, C.; Chen, Y. Co-Delivery of Nanoparticle and Molecular Drug by Hollow Mesoporous Organosilica for Tumor-Activated and Photothermal-Augmented Chemotherapy of Breast Cancer. J. Nanobiotechnol. 2021, 19, 290. DOI: 10.1186/s12951-021-01025-w.
  • Kankala, R. K.; Han, Y.-H.; Na, J.; Lee, C.-H.; Sun, Z.; Wang, S.-B.; Kimura, T.; Ok, Y. S.; Yamauchi, Y.; Chen, A.-Z.; Wu, K. C.-W. Nanoarchitectured Structure and Surface Biofunctionality of Mesoporous Silica Nanoparticles. Adv. Mater. 2020, 32, e1907035. DOI: 10.1002/adma.201907035.
  • Assaraf, Y. G.; Brozovic, A.; Gonçalves, A. C.; Jurkovicova, D.; Linē, A.; Machuqueiro, M.; Saponara, S.; Sarmento-Ribeiro, A. B. S.; Xavier, C. P. R.; Vasconcelos, M. H. The Multi-Factorial Nature of Clinical Multidrug Resistance in Cancer. Drug Resist. Updat. 2019, 46, 100645. DOI: 10.1016/j.drup.2019.100645.
  • Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233. DOI: 10.3390/ijms21093233.
  • Xu, J.; Zhang, J.; Song, J.; Liu, Y.-F.; Li, J.-N.; Wang, X.; Tang, R.-P. Construction of Multifunctional Mesoporous Silicon Nano-Drug Delivery System and Study of Dual Sensitization of Chemo-Photodynamic Therapy in Vitro and in Vivo. J. Colloid Interface Sci. 2022, 628, 271–285. DOI: 10.1016/j.jcis.2022.08.100.
  • Li, J.-G.; Li, Y.-Q.; Zhong, Z.-Q.; Fu, X.-H.; Li, Z.-H. One-Pot Self-Assembly Fabrication of Chitosan Coated Hollow Sphere for pH/Glutathione Dual Responsive Drug Delivery. Colloids Surf. B Biointerfaces 2022, 218, 112773. DOI: 10.1016/j.colsurfb.2022.112773.
  • Chen, K.; Chang, C.; Liu, Z.-H.; Zhou, Y.-M.; Xu, Q.-N.; Li, C.-H.; Huang, Z.-J.; Xu, H.-X.; Xu, P.-H.; Lu, B. Hyaluronic Acid Targeted and pH-Responsive Nanocarriers Based on Hollow Mesoporous Silica Nanoparticles for Chemo-Photodynamic Combination Therapy. Colloids Surf. B Biointerfaces 2020, 194, 111166. DOI: 10.1016/j.colsurfb.2020.111166.
  • Jiao, J.; Li, X.; Zhang, S.; Liu, J.; Di, D.-H.; Zhang, Y.; Zhao, Q.-F.; Wang, S.-L. Redox and pH Dual-Responsive PEG and Chitosan-Conjugated Hollow Mesoporous Silica for Controlled Drug Release. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 67, 26–33. DOI: 10.1016/j.msec.2016.04.091.
  • Chen, Z.-Y.; Wan, L.-H.; Yuan, Y.; Kuang, Y.; Xu, X.-Y.; Liao, T.; Liu, J.; Xu, Z.-Q.; Jiang, B.-B.; Li, C. pH/GSH-Dual-Sensitive Hollow Mesoporous Silica Nanoparticle-Based Drug Delivery System for Targeted Cancer Therapy. ACS Biomater. Sci. Eng. 2020, 6, 3375–3387. DOI: 10.1021/acsbiomaterials.0c00073.
  • Cano-Cortes, M. V.; Laz-Ruiz, J. A.; Diaz-Mochon, J. J.; Sanchez-Martin, R. M. Characterization and Therapeutic Effect of a pH Stimuli Responsive Polymeric Nanoformulation for Controlled Drug Release. Polymers (Basel) 2020, 12, 1265. DOI: 10.3390/polym12061265.
  • Qiu, Q.-H.; Quan, Z.-Z.; Zhang, H.-N.; Qin, X.-H.; Wang, R.-W.; Yu, J.-Y. pH-Triggered Sustained Drug Release of Multilayer Encapsulation System with Hollow Mesoporous Silica Nanoparticles/Chitosan/Polyacrylic Acid. Mater. Lett. 2020, 260, 126907. DOI: 10.1016/j.matlet.2019.126907.
  • Jiao, Y.-F.; Sun, Y.-F.; Chang, B.-S.; Lu, D.-R.; Yang, W. L. Redox- and Temperature-Controlled Drug Release from Hollow Mesoporous Silica Nanoparticles. Chemistry 2013, 19, 15410–15420. DOI: 10.1002/chem.201301060.
  • Chang, J.; Mo, L.-F.; Song, J.-F.; Wang, X.-C.; Liu, H.-H.; Meng, C.-C.; W, Y.-J. A pH-Responsive Mesoporous Silica Nanoparticle-Based Drug Delivery System for Targeted Breast Cancer Therapy. J. Mater. Chem. B 2022, 10, 3375–3385. DOI: 10.1039/d1tb02828f.
  • Li, K.; Zhou, D.; Cui, H.; Mo, G.; Liu, Y.; Zheng, K.; Zhou, Z.; Li, J.; Dai, P.; Sun, J.; et al. Size-Transformable Gelatin/Nanochitosan/Doxorubicin Nanoparticles with Sequentially Triggered Drug Release for Anticancer Therapy. Colloids Surf. B Biointerfaces 2022, 220, 112927. DOI: 10.1016/j.colsurfb.2022.112927.
  • Jommanee, N.; Chanthad, C.; Manokruang, K. Preparation of Injectable Hydrogels from Temperature and pH Responsive Grafted Chitosan with Tuned Gelation Temperature Suitable for Tumor Acidic Environment. Carbohydr. Polym. 2018, 198, 486–494. DOI: 10.1016/j.carbpol.2018.06.099.
  • Wu, Y.-P.; Liu, X.; Wu, Q.-H.; Yi, J.; Zhang, G.-L. Carbon Nanodots-Based Fluorescent Turn-On Sensor Array for Biothiols. Anal. Chem. 2017, 89, 7084–7089. DOI: 10.1021/acs.analchem.7b00956.
  • Liu, Y.; Tian, Y.; Tian, Y.-F.; Wang, Y.-J.; Yang, W. L. Carbon-Dot-Based Nanosensors for the Detection of Intracellular Redox State. Adv. Mater. 2015, 27, 7156–7160. DOI: 10.1002/adma.201503662.
  • Wang, X.-D.; Lin, Y.-Z.; Li, X.; Wang, D.; Di, D.-H.; Zhao, Q.-F.; Wang, S. L. Fluorescent Carbon Dot Gated Hollow Mesoporous Carbon for Chemo-Photothermal Synergistic Therapy. J. Colloid Interface Sci. 2017, 507, 410–420. DOI: 10.1016/j.jcis.2017.08.010.
  • Devi, P.; Saini, S.; Kim, K. H. The Advanced Role of Carbon Quantum Dots in Nanomedical Applications. Biosens. Bioelectron. 2019, 141, 111158. DOI: 10.1016/j.bios.2019.02.059.
  • Xiao, W.; Li, Y.; Hu, C.; Huang, Y.; He, Q.; Gao, H.-L. Melanin-Originated Carbonaceous Dots for Triple Negative Breast Cancer Diagnosis by Fluorescence and Photoacoustic Dual-Mode Imaging. J. Colloid Interface Sci. 2017, 497, 226–232. DOI: 10.1016/j.jcis.2017.02.068.
  • Zhao, Q.-F.; Wang, S.-Y.; Yang, Y.; Li, X.; Di, D.-H.; Zhang, C.-G.; Jiang, T.-Y.; Wang, S.-L. Hyaluronic Acid and Carbon Dots-Gated Hollow Mesoporous Silica for Redox and Enzyme-Triggered Targeted Drug Delivery and Bioimaging. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 78, 475–484. DOI: 10.1016/j.msec.2017.04.059.
  • Hu, C.; Liu, Y.-M.; Chen, J.-T.; He, Q.; Gao, H.-L. A Simple One-Step Synthesis of Melanin-Originated Red Shift Emissive Carbonaceous Dots for Bioimaging. J. Colloid Interface Sci. 2016, 480, 85–90. DOI: 10.1016/j.jcis.2016.07.007.
  • Yin, K.-Y.; Lu, D.-D.; Wang, L.-P.; Zhang, Q.-X.; Hao, J.-Y.; Li, G.-Z.; Li, H.-G. Hydrophobic Carbon Dots from Aliphatic Compounds with One Terminal Functional Group. J. Phys. Chem. C 2019, 123, 22447–22456. DOI: 10.1021/acs.jpcc.9b04479.
  • Xie, Z.-C.; Sun, X.-F.; Jiao, J.-M.; Xin, X. Ionic Liquid-Functionalized Carbon Quantum Dots as Fluorescent Probes for Sensitive and Selective Detection of Iron Ion and Ascorbic Acid. Colloids Surf. A 2017, 529, 38–44. DOI: 10.1016/j.colsurfa.2017.05.069.
  • Shi, X.-X.; Meng, H.-M.; Sun, Y.-Q.; Qu, L.-B.; Lin, Y.-H.; Li, Z.-H.; Du, D. Far-Red to near-Infrared Carbon Dots: Preparation and Applications in Biotechnology. Small 2019, 15, e1901507. DOI: 10.1002/smll.201901507.
  • Liao, Z.-X.; Wang, Y.-H.; Lu, Y.; Zeng, R.-X.; Li, L.; Chen, H.; Song, Q.-W.; Wang, K.-Z.; Zheng, J.-P. Covalently Hybridized Carbon Dots@Mesoporous Silica Nanobeads as a Robust and Versatile Phosphorescent Probe for Time-Resolved Biosensing and Bioimaging. Analyst 2024, 149, 1473–1480. DOI: 10.1039/d3an01935g.
  • Shirani, M. P.; Ensaf, A. A.; Rezaei, B.; Amirghofran, Z. Folic Acid and Carbon Dots-Capped Mesoporous Silica for pH-Responsive Targeted Drug Delivery and Bioimaging. J. Iran. Chem. Soc. 2023, 20, 2257–2268. DOI: 10.1007/s13738-023-02831-9.
  • Wu, S.; Shi, J.-J.; Chen, X.; Bai, L.; Wu, Q.-H.; Zhang, G.-L. Endogenous NO-Release Multi-Responsive Hollow Mesoporous Silica Nanoparticles for Drug Encapsulation and Delivery. Colloids Surf. B Biointerfaces 2023, 227, 113346. DOI: 10.1016/j.colsurfb.2023.113346.
  • Liu, L.; Kong, C.; Huo, M.; Liu, C.-Y.; Peng, L.; Zhao, T.; Wei, Y.; Qian, F.; Yuan, J.-Y. Schiff Base Interaction Tuned Mesoporous Organosilica Nanoplatforms with pH-Responsive Degradability for Efficient anti-Cancer Drug Delivery in Vivo. Chem. Commun. (Camb) 2018, 54, 9190–9193. DOI: 10.1039/c8cc05043k.
  • Li, X.-N.; Hu, S.; Lin, Z.; Yi, J.; Liu, X.; Tang, X.-P.; Wu, Q.-H.; Zhang, G.-L. Dual-Responsive Mesoporous Silica Nanoparticles Coated with Carbon Dots and Polymers for Drug Encapsulation and Delivery. Nanomedicine (Lond) 2020, 15, 2447–2458. DOI: 10.2217/nnm-2019-0440.
  • Fang, X.-L.; Chen, C.; Liu, Z.-H.; Liu, P.-X.; Zheng, N.-F. A Cationic Surfactant Assisted Selective Etching Strategy to Hollow Mesoporous Silica Spheres. Nanoscale 2011, 3, 1632–1639. DOI: 10.1039/c0nr00893a.
  • Zhou, D.; Li, D.; Jing, P.-T.; Zhai, Y.-C.; Shen, D.-Z.; Qu, S.-N.; Rogach, A. L. Conquering Aggregation-Induced Solid-State Luminescence Quenching of Carbon Dots through a Carbon Dots-Triggered Silica Gelation Process. Chem. Mater. 2017, 29, 1779–1787. DOI: 10.1021/acs.chemmater.6b05375.
  • Zhu, S.-J.; Song, Y.-B.; Zhao, X.-H.; Shao, J.-R.; Zhang, J.-H.; Yang, B. The Photoluminescence Mechanism in Carbon Dots (Graphene Quantum Dots, Carbon Nanodots, and Polymer Dots): Current State and Future Perspective. Nano Res. 2015, 8, 355–381. DOI: 10.1007/s12274-014-0644-3.
  • Zhang, Y.-Q.; Zhuo, P.; Yin, H.; Fan, Y.; Zhang, J.-H.; Liu, X.-Y.; Chen, Z.-Q. Solid-State Fluorescent Carbon Dots with Aggregation-Induced Yellow Emission for White Light-Emitting Diodes with High Luminous Efficiencies. ACS Appl. Mater. Interfaces. 2019, 11, 24395–24403. DOI: 10.1021/acsami.9b04600.
  • Li, H.-T.; He, X.-D.; Kang, Z.-H.; Huang, H.; Liu, Y.; Liu, J.-L.; Lian, S.-Y.; Tsang, C. H. A.; Yang, X.-B.; Lee, S. T. Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew. Chem. Int. Ed. Engl. 2010, 49, 4430–4434. DOI: 10.1002/anie.200906154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.