66
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sol-gel synthesized Cu/ZnS nanocomposites for photocatalytic dye degradation and antibacterial activity

, &
Received 31 Jul 2023, Accepted 20 Apr 2024, Published online: 17 May 2024

References

  • Herbst, M. P.; Jooste, S.; Kempster, P.; Kühn, A.; Madikizela, M. B.; Oelofse, S.; Papo, T.; Zokufa, M. T. Needs Assessment and Development Framework for a Tested Implementation Plan for the Initialisation and Execution of a National Toxicants Monitoring Programme (NTMP), 2003.
  • Bo, Z. J.; Maochu, G.; Li, W. J.; Min, L. Z.; Ming, Z.; Chen, Y.; Lintao. Effect of Metal Doping into Ce0. 5Zr0. 5O2 on Photocatalytic Activity of TiO2/Ce0. 45Zr0. 45M0. 1OX (M = Y, La, Mn). J. Hazard Mater. 2007, 143(1–2), 516–521. DOI: 10.1016/j.jhazmat.2006.09.071.
  • Dror, I.; Baram, D.; Berkowitz, B. Use of Nanosized Catalysts for Transformation of Chloro-Organic Pollutants. Environ. Sci. Technol. 2005, 39, 1283–1290. DOI: 10.1021/es0490222.
  • Joint Formulary Committee (Ed.). (2012). British national formulary (Vol. 64). Pharmaceutical Press.
  • Gorgas, F. J. Pyoctanin–Methyl-Violet–Pyoctanine. Dental Medicine. A Manual of Dental Materia Medica and Therapeutics, 7th ed.; P. Blakiston’s Son & Co.: Philadelphia, 1901.
  • Luo, Q. P.; Yu, X. Y.; Lei, B. X.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Reduced Graphene Oxide Hierarchical ZnO Hollow Sphere Composites with Enhanced Photocurrent and Photocatalytic Activity. J. Phys. Chem. C. 2012, 116, 8111–8117. DOI: 10.1021/jp2113329.
  • Dashamiri, S.; Ghaedi, M.; Dashtian, K.; Rahimi, M. R.; Goudarzi, A.; Jannesar, R. Ultrasonic Enhancement of the Simultaneous Removal of Quaternary Toxic Organic Dyes by CuO Nanoparticles Loaded on Activated Carbon: Central Composite Design, Kinetic and Isotherm Study. Ultrason. Sonochem. 2016, 31, 546–557. DOI: 10.1016/j.ultsonch.2016.02.008.
  • Goharshadi, E. K.; Mehrkhah, R.; Nancarrow, P. Synthesis, Characterization, and Measurement of Structural, Optical, and Phtotoluminescent Properties of Zinc Sulfide Quantum Dots. Mater. Sci. Semicond. Process. 2013, 16, 356–362. DOI: 10.1016/j.mssp.2012.09.012.
  • Goharshadi, E. K.; Hadadian, M.; Karimi, M.; Azizi-Toupkanloo, H. Photocatalytic Degradation of Reactive Black 5 Azo Dye by Zinc Sulfide Quantum Dots Prepared by a Sonochemical Method. Mater. Sci. Semicond. Process. 2013, 16, 1109–1116. DOI: 10.1016/j.mssp.2013.03.005.
  • Shafaee, M.; Goharshadi, E. K.; Mashreghi, M.; Sadeghinia, M. TiO2 Nanoparticles and TiO2@ Graphene Quantum Dots Nancomposites as Effective Visible/Solar Light Photocatalysts. J. Photochem. Photobiol, A. 2018, 357, 90–102. DOI: 10.1016/j.jphotochem.2018.02.019.
  • Acharya, K. P.; Khnayzer, R. S.; O'Connor, T.; Diederich, G.; Kirsanova, M.; Klinkova, A.; Roth, D.; Kinder, E.; Imboden, M.; Zamkov, M. The Role of Hole Localization in Sacrificial Hydrogen Production by Semiconductor–Metal Heterostructured Nanocrystals. Nano Lett. 2011, 11, 2919–2926. DOI: 10.1021/nl201388c.
  • Jiang, Y.; Meng, X. M.; Liu, J.; Xie, Z. Y.; Lee, C. S.; Lee, S. T. Hydrogen‐Assisted Thermal Evaporation Synthesis of ZnS Nanoribbons on a Large Scale. Adv. Mater. 2003, 15, 323–327. DOI: 10.1002/adma.200390079.
  • Abdulkhadar, M.; Thomas, B. Study of Raman Spectra of Nanoparticles of CdS and ZnS. Nanostruct. Mater. 1995, 5, 289–298. DOI: 10.1016/0965-9773(95)00237-9.
  • Biswas, S.; Kar, S. Fabrication of ZnS Nanoparticles and Nanorods with Cubic and Hexagonal Crystal Structures: A Simple Solvothermal Approach. Nanotechnology. 2008, 19, 045710. DOI: 10.1088/0957-4484/19/04/045710.
  • Banerjee, I. A.; Yu, L.; Matsui, H. Room-Temperature Wurtzite ZnS Nanocrystal Growth on Zn Finger-like Peptide Nanotubes by Controlling Their Unfolding Peptide Structures. J. Am. Chem. Soc. 2005, 127, 16002–16003. DOI: 10.1021/ja054907e.
  • Poornaprakash, B.; Vattikuti, S. V. P.; Subramanyam, K.; Cheruku, R.; Devarayapalli, K. C.; Kim, Y. L.; Minnam Reddy, V. R.; Park, H.; Pratap Reddy, M. S. Photoluminescence and Hydrogen Evolution Properties of ZnS: Eu Quantum Dots. Ceram. Int. 2021, 47, 28976–28984. DOI: 10.1016/j.ceramint.2021.07.058.
  • Poornaprakash, B.; Chalapathi, U.; Kumar, M.; Rajitha, B.; Reddy, B. P.; Vattikuti, S. P.; Park, S. H. Tailoring the Optical, Magnetic, and Photocatalytic Properties of ZnS Quantum Dots by Rare-Earth Ion Doping. Chem. Phys. Lett. 2020, 753, 137609. DOI: 10.1016/j.cplett.2020.137609.
  • Mariappan, A.; Pandi, P.; Beula Rani, K. R.; Neyvasagam, K.; Rajeswarapalanichamy. Study of the Photocatalytic and Antibacterial Effect of Zn and Cu Doped Hydroxyapatite. Inorg. Chem. Commun., 2022, 136, 109128. DOI: 10.1016/j.inoche.2021.109128.
  • Jothibas, M.; Elayaraja, M.; Paulson, E.; Srinivasan, S.; Kumar, B. A. Dynamic Photocatalytic Degradation of Organic Pollutants Employing co-Doped ZnS Nanoparticles Synthesized Via Solid State Reaction Method. Surf. Interfaces. 2022, 33, 102249. DOI: 10.1016/j.surfin.2022.102249.
  • Mohamed, S. H. Photocatalytic, Optical, and Electrical Properties of Copper-Doped Zinc Sulfide Thin Films. J. Phys. D: Appl. Phys. 2010, 43, 035406. DOI: 10.1088/0022-3727/43/3/035406.
  • Hamed, Z. H.; Ahmed, K. E. A.; Elsheikh, H. A. Synthesis and Characterization of ZnS Nanoparticles by Chemical Precipitation Method. Aswan Univ. J. Environ. Stud. 2021, 0, 0–0. DOI: 10.21608/aujes.2021.66918.1014.
  • Bredol, M.; Merikhi, J. ZnS Precipitation: Morphology Control. J. Mater. Sci. 1998, 33, 471–476. DOI: 10.1023/A:1004396519134.
  • Stanić, V.; Etsell, T. H.; Pierre, A. C.; Mikula, R. J. Sol-Gel Processing of ZnS. Mater. Lett. 1997, 31, 35–38. DOI: 10.1016/S0167-577X(96)00237-6.
  • Hoa, T. T. Q.; Vu, L. V.; Canh, T. D.; Long, N. N. Preparation of ZnS Nanoparticles by Hydrothermal Method. J. Phys. Conf. Ser. 2009, 187, 012081. DOI: 10.1088/1742-6596/187/1/012081.
  • Zhou, X.; Yang, Q.; Wang, H.; Huang, F.; Zhang, J.; Xu, S. Effects of Ni2+ Concentration and Vacuum Annealing on Structure, Morphology and Optical Properties of Ni Doped ZnS Nanopowders Synthesized by Hydrothermal Method. Adv. Powder Technol. 2018, 29, 977–984. DOI: 10.1016/j.apt.2018.01.016.
  • Liao, X. H.; Zhu, J. J.; Chen, H. Y. Microwave Synthesis of Nanocrystalline Metal Sulfides in Formaldehyde Solution. Mater. Sci. Eng. B. 2001, 85, 85–89. DOI: 10.1016/S0921-5107(01)00647-X.
  • Zhao, Y.; Hong, J. M.; Zhu, J. J. Microwave-Assisted Self-Assembled ZnS Nanoballs. J. Cryst. Growth. 2004, 270, 438–445. DOI: 10.1016/j.jcrysgro.2004.06.036.
  • Yang, H.; Huang, C.; Su, X.; Tang, A. Microwave-Assisted Synthesis and Luminescent Properties of Pure and Doped ZnS Nanoparticles. J. Alloys Compd. 2005, 402, 274–277. DOI: 10.1016/j.jallcom.2005.04.150.
  • Prasad, N.; Balasubramanian, K. Optical, Phonon and Efficient Visible and Infrared Photocatalytic Activity of Cu Doped ZnS Micro Crystals. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2017, 173, 687–694. DOI: 10.1016/j.saa.2016.10.014.
  • Dhas, N. A.; Zaban, A.; Gedanken, A. Surface Synthesis of Zinc Sulfide Nanoparticles on Silica Microspheres: Sonochemical Preparation, Characterization, and Optical Properties. Chem. Mater. 1999, 11, 806–813. DOI: 10.1021/cm980670s.
  • Doaa, A. A.; El-Katori, E. E.; Nagiub, A. M. Synthesis, Characterization, and Heavy Metal Removal Efficiency of Zinc Sulfide Nanoparticles (Zsn’s). Egypt. J. Chem. 2024, 67, 347–355.
  • Qiu, S.; Zhou, H.; Shen, Z.; Hao, L.; Chen, H.; Zhou, X. Synthesis, Characterization, and Comparison of Antibacterial Effects and Elucidating the Mechanism of ZnO, CuO and CuZnO Nanoparticles Supported on Mesoporous Silica SBA-3. RSC Adv. 2020, 10, 2767–2785. DOI: 10.1039/c9ra09829a.
  • Rekha, K.; Nirmala, M.; Nair, M. G.; Anukaliani, A. Structural, Optical, Photocatalytic and Antibacterial Activity of Zinc Oxide and Manganese Doped Zinc Oxide Nanoparticles. Physica B. 2010, 405, 3180–3185. DOI: 10.1016/j.physb.2010.04.042.
  • Akhavan, O.; Azimirad, R.; Safa, S.; Larijani, M. M. Visible Light Photo-Induced Antibacterial Activity of CNT–Doped TiO 2 Thin Films with Various CNT Contents. J. Mater. Chem. 2010, 20, 7386–7392. DOI: 10.1039/c0jm00543f.
  • Wang, A.; Shen, H.; Zang, S.; Lin, Q.; Wang, H.; Qian, L.; Niu, J.; Song Li, L. Bright, Efficient, and Color-Stable Violet ZnSe-Based Quantum Dot Light-Emitting Diodes. Nanoscale. 2015, 7, 2951–2959. DOI: 10.1039/c4nr06593j.
  • Madkour, M.; Al Sagheer, F. Au/ZnS and Ag/ZnS Nanoheterostructures as Regenerated Nanophotocatalysts for Photocatalytic Degradation of Organic Dyes. Opt. Mater. Express. 2017, 7, 158–169. DOI: 10.1364/OME.7.000158.
  • Poornaprakash, B.; Chalapathi, U.; Vattikuti, S. V. P.; Sekhar, M. C.; Reddy, B. P.; Poojitha, P. T.; Reddy, M. S. P.; Suh, Y.; Park, S.-H. Enhanced Fluorescence Efficiency and Photocatalytic Activity of ZnS Quantum Dots through Ga Doping. Ceram. Int. 2019, 45, 2289–2294. DOI: 10.1016/j.ceramint.2018.10.143.
  • Zhao, L.; Wang, Y.; Wang, A.; Li, X.; Song, C.; Hu, Y. Cr–Doped ZnS Semiconductor Catalyst with High Catalytic Activity for Hydrogen Production from Hydrogen Sulfide in Non-Thermal Plasma. Catal. Today 2019, 337, 83–89. DOI: 10.1016/j.cattod.2019.02.032.
  • Qin, H.; Hu, T.; Zhai, Y.; Lu, N.; Aliyeva, J. Sonochemical Synthesis of ZnS Nanolayers on the Surface of Microbial Cells and Their Application in the Removal of Heavy Metals. J. Hazard. Mater. 2020, 400, 123161. DOI: 10.1016/j.jhazmat.2020.123161.
  • Iranmanesh, P.; Saeednia, S.; Nourzpoor, M. Characterization of ZnS Nanoparticles Synthesized by co-Precipitation Method. Chinese Phys. B. 2015, 24, 046104. DOI: 10.1088/1674-1056/24/4/046104.
  • Rema Devi, B. S.; Raveendran, R.; Vaidyan, A. V. Synthesis and Characterization of Mn2+-Doped ZnS Nanoparticles. Pramana. - J. Phys. 2007, 68, 679–687. DOI: 10.1007/s12043-007-0068-7.
  • Kuppayee, M.; Nachiyar, G. V.; Ramasamy, V. Synthesis and Characterization of Cu2+ Doped ZnS Nanoparticles Using TOPO and SHMP as Capping Agents. Appl. Surf. Sci. 2011, 257, 6779–6786. DOI: 10.1016/j.apsusc.2011.02.124.
  • Devi, L. S.; Devi, K. N.; Sharma, B. I.; Sarma, H. N. Effect of Mn2+ Doping on Structural, Morphological and Optical Properties of ZnS Nanoparticles by Chemical co-Precipitation Method. IOSR J. Appl. Phys. 2014, 6, 6–14. DOI: 10.9790/4861-06220614.
  • Khajuria, S.; Sanotra, S.; Ladol, J.; Sheikh, H. N. Synthesis, Characterization and Optical Properties of Cobalt and Lanthanide Doped CdS Nanoparticles. J. Mater. Sci. Mater. Electron. 2015, 26, 7073–7080. DOI: 10.1007/s10854-015-3328-1.
  • Rao, N. S.; Bale, S.; Purnima, M.; Siva Kumar, K.; Rahman, S. Optical Absorption and Electron Spin Resonance Studies of Cu 2+ in Li 2 O-Na 2 OB 2 O 3-as 2 O 3 Glasses. Bull. Mater. Sci. 2005, 28, 589–592. DOI: 10.1007/BF02706347.
  • Chalana, S. R.; Bose, R. J.; Krishnan, R. R.; Kavitha, V. S.; Sreedharan, R. S.; Pillai, V. M. Structural Phase Modification in Cu Incorporated Nanostructured Zinc Sulfide Thin Films. J. Phys. Chem. Solids. 2016, 95, 24–36. DOI: 10.1016/j.jpcs.2016.03.009.
  • Prathap, P.; Subbaiah, Y. V.; Reddy, K. R.; Miles, R. W. Influence of Growth Rate on Microstructure and Optoelectronic Behaviour of ZnS Films. J. Phys. D. Appl. Phys. 2007, 40, 5275–5282. DOI: 10.1088/0022-3727/40/17/039.
  • Pawar, R. C.; Choi, D. H.; Lee, J. S.; Lee, C. S. Formation of Polar Surfaces in Microstructured ZnO by Doping with Cu and Applications in Photocatalysis Using Visible Light. Mater. Chem. Phys. 2015, 151, 167–180. DOI: 10.1016/j.matchemphys.2014.11.051.
  • Motlagh, M. M.; Hassanzadeh-Tabrizi, S. A.; Saffar-Teluri, A. Sol–Gel Synthesis of Mn2O3/Al2O3/SiO2 Hybrid Nanocomposite and Application for Removal of Organic Dye. J. Sol-Gel Sci. Technol. 2015, 73, 9–13. DOI: 10.1007/s10971-014-3487-1.
  • Tabib, A.; Bouslama, W.; Sieber, B.; Addad, A.; Elhouichet, H.; Férid, M.; Boukherroub, R. Structural and Optical Properties of Na Doped ZnO Nanocrystals: Application to Solar Photocatalysis. Appl. Surf. Sci. 2017, 396, 1528–1538. DOI: 10.1016/j.apsusc.2016.11.204.
  • Chanu, L. A.; Singh, W. J.; Singh, K. J.; Devi, K. N. Effect of Operational Parameters on the Photocatalytic Degradation of Methylene Blue Dye Solution Using Manganese Doped ZnO Nanoparticles. Results Phys. 2019, 12, 1230–1237. DOI: 10.1016/j.rinp.2018.12.089.
  • Rahmi, R.; Lubis, S.; Az-Zahra, N.; Puspita, K.; Iqhrammullah, M. Synergetic Photocatalytic and Adsorptive Removals of Metanil Yellow Using TiO2/Grass-Derived Cellulose/Chitosan (TiO2/GC/CH) Film Composite. Int. J. Eng. 2021, 34, 1827–1836.
  • Caballero, L.; Whitehead, K. A.; Allen, N. S.; Verran, J. Inactivation of Escherichia coli on Immobilized TiO2 Using Fluorescent Light. J. Photochem. Photobiol, A. 2009, 202, 92–98. DOI: 10.1016/j.jphotochem.2008.11.005.
  • Kiwi, J.; Nadtochenko, V. Evidence for the Mechanism of Photocatalytic Degradation of the Bacterial Wall Membrane at the TiO2 Interface by ATR-FTIR and Laser Kinetic Spectroscopy. Langmuir. 2005, 21, 4631–4641. DOI: 10.1021/la046983l.
  • Li, Y.; Zhang, W.; Niu, J.; Chen, Y. Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles. ACS Nano. 2012, 6, 5164–5173. DOI: 10.1021/nn300934k.
  • Peerakiatkhajohn, P.; Butburee, T.; Sul, J. H.; Thaweesak, S.; Yun, J. H. Efficient and Rapid Photocatalytic Degradation of Methyl Orange Dye Using Al/ZnO Nanoparticles. Nanomaterials. 2021, 11, 1059. DOI: 10.3390/nano11041059.
  • Chen, L.; Tran. T, T.; Huang, C.; Li, J.; Yuan, L.; Cai, Q. Synthesis and Photocatalytic Application of Au/Ag Nanoparticle-Sensitized ZnO Films. Appl. Surf. Sci. 2013, 273, 82–88. DOI: 10.1016/j.apsusc.2013.01.184.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.