65
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Green synthesis of copper oxide nanoparticles using Simarouba glauca leaf extract, characterization and screening for their biological applications

, , , , , , , & show all
Received 26 Dec 2023, Accepted 19 Apr 2024, Published online: 13 May 2024

References

  • Waris, A.; Din, M.; Ali, A.; Ali, M.; Afridi, S.; Baset, A.; Khan, A. U. A Comprehensive Review of Green Synthesis of Copper Oxide Nanoparticles and Their Diverse Biomedical Applications. Inorg. Chem. Commun. 2021, 123, 108369. DOI: 10.1016/j.inoche.2020.108369.
  • Verma, N.; Kumar, N. Synthesis and Biomedical Applications of Copper Oxide Nanoparticles: An Expanding Horizon. ACS Biomater. Sci. Eng. 2019, 5, 1170–1188. DOI: 10.1021/acsbiomaterials.8b01092.
  • Nadeem, M.; Khan, R.; Afridi, K.; Nadhman, A.; Ullah, S.; Faisal, S.; Mabood, Z. U.; Hano, C.; Abbasi, B. H. Green Synthesis of Cerium Oxide Nanoparticles (CeO2 NPs) and Their Antimicrobial Applications: A Review. IJN. 2020, ume 15, 5951–5961. DOI: 10.2147/IJN.S255784.
  • Wu, S.; Rajeshkumar, S.; Madasamy, M.; Mahendran, V. Green Synthesis of Copper Nanoparticles Using Cissus Vitiginea and Its Antioxidant and Antibacterial Activity against Urinary Tract Infection Pathogens. Artif. Cells. Nanomed. Biotechnol. 2020, 48, 1153–1158. DOI: 10.1080/21691401.2020.1817053.
  • Santos, C. S.; Gabriel, B.; Blanchy, M.; Menes, O.; García, D.; Blanco, M.; Neto, V. Industrial Applications of Nanoparticles–a Prospective Overview. Mater. Today: Proc. 2015, 2, 456–465. DOI: 10.1016/j.matpr.2015.04.056.
  • Amin, F.; Khattak, B.; Alotaibi, A.; Qasim, M.; Ahmad, I.; Ullah, R.; Bourhia, M.; Gul, A.; Zahoor, S.; Ahmad, R.; Fozia. Green Synthesis of Copper Oxide Nanoparticles Using Aerva Javanica Leaf Extract and Their Characterization and Investigation of in Vitro Antimicrobial Potential and Cytotoxic Activities. J. Evidence-Based Complementary Altern. Med. 2021, 2021, 1–12. DOI: 10.1155/2021/5589703.
  • Rehana, D.; Mahendiran, D.; Kumar, R. S.; Rahiman, A. K. Evaluation of Antioxidant and Anticancer Activity of Copper Oxide Nanoparticles Synthesized Using Medicinally Important Plant Extracts. Biomed. Pharmacother. 2017, 89, 1067–1077. DOI: 10.1016/j.biopha.2017.02.10.
  • Keabadile, O. P.; Aremu, A. O.; Elugoke, S. E.; Fayemi, O. E. Green and Traditional Synthesis of Copper Oxide nanoparticles – Comparative Study. Nanomaterials (Basel). 2020, 10, 2502. DOI: 10.3390/nano10122502.
  • Chinnathambi, A.; Awad Alahmadi, T.; Ali Alharbi, S. Biogenesis of Copper Nanoparticles (Cu-NPs) Using Leaf Extract of Allium Noeanum, Antioxidant and in Vitro Cytotoxicity. Artif. Cells. Nanomed. Biotechnol. 2021, 49, 500–510. DOI: 10.1080/21691401.2021.1926275.
  • Mali, S. C.; Dhaka, A.; Githala, C. K.; Trivedi, R. Green Synthesis of Copper Nanoparticles Using Celastrus Paniculatus Willd. leaf Extract and Their Photocatalytic and Antifungal Properties. Biotechnol. Rep. (Amst). 2020, 27, e00518. DOI: 10.1016/j.btre.2020.e00518.
  • Mahmood, R. I.; Kadhim, A. A.; Ibraheem, S.; Albukhaty, S.; Mohammed-Salih, H. S.; Abbas, R. H.; Jabir, M. S.; Mohammed, M. K. A.; Nayef, U. M.; AlMalki, F. A.; et al. Biosynthesis of Copper Oxide Nanoparticles Mediated Annona Muricata as Cytotoxic and Apoptosis Inducer Factor in Breast Cancer Cell Lines. Sci. Rep. 2022, 12, 16165. DOI: 10.1038/s41598-022-20360-y.
  • Chakraborty, N.; Banerjee, J.; Chakraborty, P.; Banerjee, A.; Chanda, S.; Ray, K.; Acharya, K.; Sarkar, J. Green Synthesis of Copper/Copper Oxide Nanoparticles and Their Applications: A Review. Green Chem. Lett. Rev. 2022, 15, 187–215. DOI: 10.1080/17518253.2022.2025916.
  • Hemmati, S.; Ahany Kamangar, S.; Ahmeda, A.; Zangeneh, M. M.; Zangeneh, A. Application of Copper Nanoparticles Containing Natural Compounds in the Treatment of Bacterial and Fungal Diseases. Appl. Organom. Chem. 2020, 34, e5465. DOI: 10.1002/aoc.5465.
  • Sarkar, J.; Chakraborty, N.; Chatterjee, A.; Bhattacharjee, A.; Dasgupta, D.; Acharya, K. Green Synthesized Copper Oxide Nanoparticles Ameliorate Defence and Antioxidant Enzymes in Lens Culinaris. Nanomater. 2020, 10, 312. DOI: 10.3390/nano10020312.
  • Faisal, S.; Jan, H.; Alam, I.; Rizwan, M.; Hussain, Z.; Sultana, K.; Ali, Z.; Uddin, M. N.; Abdullah. In Vivo Analgesic, anti-Inflammatory, and anti-Diabetic Screening of Bacopa Monnieri Synthesized Copper Oxide Nanoparticles, ACS Omega. 2022, 7, 4071–4082. DOI: 10.1021/acsomega.1c05410.
  • Ananda Murthy, H. C.; Zeleke, T. D.; Tan, K. B.; Ghotekar, S.; Alam, M. W.; Balachandran, R.; Chan, K.-Y.; Sanaulla, P. F.; Anil Kumar, M. R.; Ravikumar, C. R. Enhanced Multifunctionality of CuO Nanoparticles Synthesized Using Aqueous Leaf Extract of Vernonia Amygdalina Plant. Results Chem. 2021, 3, 100141. DOI: 10.1016/j.rechem.2021.100141.
  • Akintelu, S. A.; Folorunso, A. S.; Folorunso, F. A.; Oyebamiji, A. K. Green Synthesis of Copper Oxide Nanoparticles for Biomedical Application and Environmental Remediation. Heliyon. 2020, 6, e04508. DOI: 10.1016/j.heliyon.2020.e04508.
  • Ramasamy, S. P.; Rajendran, A.; Pallikondaperumal, M.; Sundararajan, P.; Husain, F. M.; Khan, A.; Hakeem, M. J.; Alyousef, A. A.; Albalawi, T.; Alam, P.; et al. Broad-Spectrum Antimicrobial, Antioxidant, and Anticancer Studies of Leaf Extract of Simarouba Glauca DC in Vitro. Antibiotics. 2022, 11, 59. DOI: 10.3390/antibiotics11010059.
  • Jose, B. E. E. N. A.; Martin, R. I. Y. A. Simarouba Glauca Bark Extract Mediated Synthesis and Characterisation of Iron Oxide and Silver Nanoparticles and Their Antibacterial, Cytotoxic and Photocatalytic Activity. Int. J. Pharm. Pharm. Sci. 2020, 12, 23–28. DOI: 10.22159/ijpps.2020v12i9.38510.
  • Jose, A.; Chaitanya, M. V.; Kannan, E.; Madhunapantula, S. V. Tricaproin Isolated from Simarouba Glauca Inhibits the Growth of Human Colorectal Carcinoma Cell Lines by Targeting Class-1 Histone Deacetylases. Front. Pharmacol. 2018, 9, 127. DOI: 10.3389/2Ffphar.2018.00127.
  • Vikas, B.; Kunjiraman, S.; Rajam, S. S. N.; Anil, S. The Apoptotic Properties of Leaf Extracts of Simarouba Glauca against Human Leukemic Cancer Cells. Asian Pac. J. Cancer Prev. APJCP. 2021, 22, 1305. DOI: 10.31557/apjcp.2021.22.4.1305.
  • Alves, I. A.; Miranda, H. M.; Soares, L. A.; Randau, K. P. Simaroubaceae Family: Botany, Chemical Composition and Biological Activities. Rev. Bras. Farmacogn. 2014, 24, 481–501. DOI: 10.1016/j.bjp.2014.07.021.
  • Barbosa, L. F.; Braz‐Filho, R.; Vieira, I. J. C. Chemical Constituents of Plants from the Genus Simaba (Simaroubaceae). Chem. Biodiversity. 2011, 8, 2163–2178. DOI: 10.1016/j.bjp.2014.07.021.
  • Benhammada, A.; Trache, D. Green Synthesis of CuO Nanoparticles Using Malva Sylvestris Leaf Extract with Different Copper Precursors and Their Effect on Nitrocellulose Thermal Behavior. J. Therm. Anal. Calorim. 2022, 147, 1–16. DOI: 10.1007/s10973-020-10469-5.
  • Ganeshkar, M. P.; Goder, P. H.; Mirjankar, M. R.; Gaddigal, A. T.; Shivappa, P.; Kamanavalli, C. M. Characterization and Screening of Anticancer Properties of Cerium Oxide Nanoparticles Synthesized Using Averrhoa Carambola Plant Extract. Inorg. Nano-Met. Chem. 2022, 1–14. DOI: 10.1080/24701556.2022.2077374.
  • Ganeshkar, M. P.; Gaddigal, A. T.; Shivappa, P.; Poojari, P. B.; Goder, P. H.; Kamanavalli, C. M. Biocompatibility Assessment of Rutin and PEG Loaded Novel Nanoceria on Human Erythrocytes and Human Myeloid Leukemia (U937) Cells. J. Drug Del. Sci. Tech. 2023, 86, 104761. DOI: 10.1016/j.jddst.2023.104761.
  • Yugandhar, P.; Vasavi, T.; Uma Maheswari Devi, P.; Savithramma, N. Bioinspired Green Synthesis of Copper Oxide Nanoparticles from Syzygium Alternifolium (Wt.) Walp: Characterization and Evaluation of Its Synergistic Antimicrobial and Anticancer Activity. Appl. Nanosci. 2017, 7, 417–427. DOI: 10.1007/s13204-017-0584-9.
  • Sivaraj, D. K.; Kumar, S. S.; Dharmadhas, J. S.; Al-Dayan, N.; Dhanasekaran, S.; Aldhayan, S. H. A.; Periakaruppan, R. One-Pot Green Synthesis and Characterization of Copper Oxide Nanoparticles with Antibacterial and Antioxidant Properties Using Coleus Amboinicus. Bio. Con. Bioref. 2023, 1–8. DOI: 10.1007/s13399-023-04799-1.
  • Gonçalves Martins, T. A.; Botelho Junior, A. B.; de Moraes, V. T.; Espinosa, D. C. R. Study of pH Influence in the Synthesis of Copper Nanoparticles Using Ascorbic Acid as Reducing and Stabilizing Agent. In TMS 2020 149th Annual Meeting and Exhibition Supplemental Proceedings. The Minerals, Metals and Materials Series. Springer: Cham, 2020, pp 1547–1557. DOI: 10.1007/978-3-030-36296-6_143.
  • Huang, W.; Yan, M.; Duan, H.; Bi, Y.; Cheng, X.; Yu, H. Synergistic Antifungal Activity of Green Synthesized Silver Nanoparticles and Epoxiconazole against Setosphaeria Turcica. J. Nanomat. 2020, 2020, 1–7. DOI: 10.1155/2020/9535432.
  • Sankar, R.; Manikandan, P.; Malarvizhi, V.; Fathima, T.; Shivashangari, K. S.; Ravikumar, V. Green Synthesis of Colloidal Copper Oxide Nanoparticles Using Carica Papaya and Its Application in Photocatalytic Dye Degradation. Spectrochim. Acta, Part A. 2014, 121, 746–750. DOI: 10.1016/j.saa.2013.12.020.
  • Jillani, S.; Jelani, M.; Hassan, N. U.; Ahmad, S.; Hafeez, M. Synthesis, Characterization and Biological Studies of Copper Oxide Nanostructures. Mater. Res. Express. 2018, 5, 045006. DOI: 10.1088/2053-1591/aab864.
  • Gowri, M.; Latha, N.; Rajan, M. Copper Oxide Nanoparticles Synthesized Using Eupatorium Odoratum, Acanthospermum Hispidum Leaf Extracts, and Its Antibacterial Effects against Pathogens: A Comparative Study. BioNanoSci. 2019, 9, 545–552. DOI: 10.1007/s12668-019-00655-7.
  • Mahmoud, A. E. D.; Al-Qahtani, K. M.; Alflaij, S. O.; Al-Qahtani, S. F.; Alsamhan, F. A. Green Copper Oxide Nanoparticles for Lead, Nickel, and Cadmium Removal from Contaminated Water. Sci. Rep. 2021, 11, 12547. DOI: 10.1038/s41598-021-91093-7.
  • Khaldari, I.; Naghavi, M. R.; Motamedi, E. Synthesis of Green and Pure Copper Oxide Nanoparticles Using Two Plant Resources via Solid-State Route and Their Phytotoxicity Assessment. RSC Adv. 2021, 11, 3346–3353. DOI: 10.1039/D0RA09924D.
  • Singh, P. K.; Kumar, P. A. N. K. A. J.; Hussain, M. A. N. O. W. A. R.; Das, A. K.; Nayak, G. C. Synthesis and Characterization of CuO Nanoparticles Using Strong Base Electrolyte through Electrochemical Discharge Process. Bull. Mater. Sci. 2016, 39, 469–478. DOI: 10.1007/s12034-016-1159-1.
  • Prasad, P. R.; Kanchi, S.; Naidoo, E. B. In Vitro Evaluation of Copper Nanoparticles Cytotoxicity on Prostate Cancer Cell Lines and Their Antioxidant, Sensing and Catalytic Activity: One-Pot Green Approach. J. Photochem. Photobiol. B. 2016, 161, 375–382. DOI: 10.1016/j.jphotobiol.2016.06.008.
  • Andualem, W. W.; Sabir, F. K.; Mohammed, E. T.; Belay, H. H.; Gonfa, B. A. Synthesis of Copper Oxide Nanoparticles Using Plant Leaf Extract of Catha Edulis and Its Antibacterial Activity. J. Nanotechnol. 2020, 2020, 1–10. DOI: 10.1155/2020/2932434.
  • Mohamed, E. A. Green Synthesis of Copper and Copper Oxide Nanoparticles Using the Extract of Seedless Dates. Heliyon. 2020, 6, e03123. DOI: 10.1016/j.heliyon.2019.e03123.
  • Alipour, S.; Kalari, S.; Morowvat, M. H.; Sabahi, Z.; Dehshahri, A. Green Synthesis of Selenium Nanoparticles by Cyanobacterium Spirulina Platensis (Abdf 2224): Cultivation Condition Quality Controls. BioMed. Research. Int. 2021, 2021, 1–11. DOI: 10.1155/2021/6635297.
  • Bhavyasree, P. G.; Xavier, T. S. Green Synthesis of Copper Oxide/Carbon Nanocomposites Using the Leaf Extract of Adhatoda Vasica (Nees), Their Characterization and Antimicrobial Activity. Heliyon. 2020, 6, e03323. DOI: 10.1016/j.heliyon.2020.e03323.
  • Mourdikoudis, S.; Pallares, R. M.; Thanh, N. T. Characterization Techniques for Nanoparticles: Comparison and Complementarity upon Studying Nanoparticle Properties. Nanoscale. 2018, 10, 12871–12934. DOI: 10.1039/C8NR02278J.
  • Hyba, A. M.; El Refay, H. M.; Shahen, S.; Gaber, G. A. Comparison Fabrication, Identification and Avoidance of Corrosion Potential of M-CuO NPs/S-CuO NPs to Suppress Corrosion on Steel in an Acidic Solution. Chem. Pap. 2023, 77, 5395–5407. DOI: 10.1007/s11696-023-02871-8.
  • Rudraswamy, S.; Hommerhalli, J. S. P.; Doggalli, M. K. N. Antioxidant Activity, Total Phenolic, Flavonoid Content in Simarouba Glauca leaves-An in Vitro Study. Int. J. Pharm. Res. 2021, 13, 09752366. DOI: 10.31838/ijpr/2021.13.01.471.
  • Raul, P. K.; Senapati, S.; Sahoo, A. K.; Umlong, I. M.; Devi, R. R.; Thakur, A. J.; Veer, V. CuO Nanorods: A Potential and Efficient Adsorbent in Water Purification. RSC Adv. 2014, 4, 40580–40587. DOI: 10.1039/C4RA04619F.
  • Naghdi, S.; Cherevan, A.; Giesriegl, A.; Guillet-Nicolas, R.; Biswas, S.; Gupta, T.; Wang, J.; Haunold, T.; Bayer, B. C.; Rupprechter, G.; et al. Selective Ligand Removal to Improve Accessibility of Active Sites in Hierarchical MOFs for Heterogeneous Photocatalysis. Nat. Commun. 2022, 13, 282. DOI: 10.1038/s41467-021-27775-7.
  • Mali, S. C.; Raj, S.; Trivedi, R. Biosynthesis of Copper Oxide Nanoparticles Using Enicostemma Axillare (Lam.) Leaf Extract. Biochem. Biophys. Rep. 2019, 20, 100699. DOI: 10.1016/j.bbrep.2019.100699.
  • Manasa, D. J.; Chandrashekar, K. R.; Kumar, D. M.; Niranjana, M.; Navada, K. M.; Mussaenda Frondosa, L. Mediated Facile Green Synthesis of Copper Oxide Nanoparticles–Characterization, Photocatalytic and Their Biological Investigations. Arabian J. Chem. 2021, 14, 103184. DOI: 10.1016/j.arabjc.2021.103184.
  • Muthuvel, A.; Jothibas, M.; Manoharan, C. Synthesis of Copper Oxide Nanoparticles by Chemical and Biogenic Methods: Photocatalytic Degradation and in Vitro Antioxidant Activity. Nanotechnol. Environ. Eng. 2020, 5, 1–19. DOI: 10.1007/s41204-020-00078-w.
  • Nagore, P.; Ghotekar, S.; Mane, K.; Ghoti, A.; Bilal, M.; Roy, A. Structural Properties and Antimicrobial Activities of Polyalthia Longifolia Leaf Extract-Mediated CuO Nanoparticles. BioNanoSci. 2021, 11, 579–589. DOI: 10.1007/s12668-021-00851-4.
  • Shaaban, M. T.; Mohamed, B. S.; Zayed, M.; El-Sabbagh, S. M. Antibacterial, Antibiofilm, and Anticancer Activity of Silver-Nanoparticles Synthesized from the Cell-Filtrate of Streptomyces enissocaesilis. BMC Biotechnol. 2024, 24, 8. DOI: 10.1186/s12896-024-00833-w.
  • Meghana, S.; Kabra, P.; Chakraborty, S.; Padmavathy, N. Understanding the Pathway of Antibacterial Activity of Copper Oxide Nanoparticles. RSC Adv. 2015, 5, 12293–12299. DOI: 10.1039/C4RA12163E.
  • Sanaeimehr, Z.; Javadi, I.; Namvar, F. Antiangiogenic and Antiapoptotic Effects of Green-Synthesized Zinc Oxide Nanoparticles Using Sargassum Muticum Algae Extraction. Cancer Nanotechnol. 2018, 9, 3. DOI: 10.1186/s12645-018-0037-5.
  • Mani, V. M.; Kalaivani, S.; Sabarathinam, S.; Vasuki, M.; Soundari, A. J. P. G. X.; Ayyappa Das, M. P.; Elfasakhany, A.; Pugazhendhi, A. Copper Oxide Nanoparticles Synthesized from an Endophytic Fungus Aspergillus terreus: Bioactivity and anti-Cancer Evaluations. Environ. Res. 2021, 201, 111502. DOI: 10.1016/j.envres.2021.111502.
  • Nagajyothi, P. C.; Muthuraman, P.; Sreekanth, T. V. M.; Kim, D. H.; Shim, J. Green Synthesis: In Vitro Anticancer Activity of Copper Oxide Nanoparticles against Human Cervical Carcinoma Cells. Arabian J. Chem. 2017, 10, 215–225. DOI: 10.1016/j.arabjc.2016.01.011.
  • Chung, I. M.; Abdul Rahuman, A.; Marimuthu, S.; Vishnu Kirthi, A.; Anbarasan, K.; Padmini, P.; Rajakumar, G. Green Synthesis of Copper Nanoparticles Using Eclipta Prostrata Leaves Extract and Their Antioxidant and Cytotoxic Activities. Exp. Ther. Med. 2017, 14, 18–24. DOI: 10.3892/etm.2017.4466.
  • Nagaraj, E.; Karuppannan, K.; Shanmugam, P.; Venugopal, S. Exploration of Bio-Synthesized Copper Oxide Nanoparticles Using Pterolobium Hexapetalum Leaf Extract by Photocatalytic Activity and Biological Evaluations. J. Clust. Sci. 2019, 30, 1157–1168. DOI: 10.1007/s10876-019-01579-8.
  • Phull, A. R.; Ali, A.; Dhong, K. R.; Zia, M.; Mahajan, P. G.; Park, H. J. Synthesis, Characterization, Anticancer Activity Assessment and Apoptosis Signaling of Fucoidan Mediated Copper Oxide Nanoparticles. Arabian J. Chem. 2021, 14, 103250. DOI: 10.1016/j.arabjc.2021.103250.
  • Dutta, D.; Mukherjee, R.; Patra, M.; Banik, M.; Dasgupta, R.; Mukherjee, M.; Basu, T. Green Synthesized Cerium Oxide Nanoparticle: A Prospective Drug against Oxidative Harm. Colloids Surf. B Biointerf. 2016, 147, 45–53. DOI: 10.1016/j.colsurfb.2016.07.045.
  • Ganeshkar, M. P.; Mirjankar, M. R.; Shivappa, P.; Gaddigal, A. T.; Goder, P. H.; Kamanavalli, C. M. Biogenic Synthesis of Selenium Nanoparticles, Characterization and Screening of Therapeutic Applications Using Averrhoa Carambola Leaf Extract. Part. Sci. Technol. 2023, 1–13. DOI: 10.1080/02726351.2023.2164876.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.