58
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Olive oil-in-water high internal phase Pickering emulsions stabilized by hydroxyapatite nanoparticles

, , &
Received 26 Dec 2023, Accepted 13 Apr 2024, Published online: 21 May 2024

References

  • Cameron, N. R. High Internal Phase Emulsion Templating as a Route to Well-Defined Porous Polymers. Polymer 2005, 46, 1439–1449. DOI: 10.1016/j.polymer.2004.11.097.
  • Capron, I.; Cathala, B. Surfactant-Free High Internal Phase Emulsions Stabilized by Cellulose Nanocrystals. Biomacromolecules 2013, 14, 291–296. DOI: 10.1021/bm301871k.
  • Ikem, V. O.; Menner, A.; Bismarck, A. High Internal Phase Emulsions Stabilized Solely by Functionalized Silica Particles. Angew. Chem. Int. Ed. 2008, 47, 8277–8279. DOI: 10.1002/anie.200802244.
  • Shi, A. M.; Feng, X. Y.; Wang, Q.; Adhikari, B. Pickering and High Internal Phase Pickering Emulsions Stabilized by Protein-Based Particles: A Review of Synthesis, Application and Prospective. Food Hydrocolloids 2020, 109, 106117. DOI: 10.1016/j.foodhyd.2020.106117.
  • Abdullah, Weiss, J.; Ahmad, T.; Zhang, C.; Zhang, H. A Review of Recent Progress on High Internal-Phase Pickering Emulsions in Food Science. Trend Food Sci. Technol. 2021, 106, 91–103.
  • Zhao, Q. L.; Zaaboul, F.; Liu, Y. F.; Li, J. W. Recent Advances on Protein-Based Pickering High Internal Phase Emulsions (Pickering HIPEs): Fabrication, Characterization, and Applications. Compr. Rev. Food Sci. Food Safe 2020, 19, 1934–1968. DOI: 10.1111/1541-4337.12570.
  • Gao, H. X.; Ma, L.; Cheng, C.; Liu, J. P.; Liang, R. H.; Zou, L. Q.; Liu, W.; McClements, D. J. Review of Recent Advances in the Preparation, Properties, and Applications of High Internal Phase Emulsions. Trend Food Sci. Technol. 2021, 112, 36–49. DOI: 10.1016/j.tifs.2021.03.041.
  • Babak, V. G.; Stebe, M. J. Highly Concentrated Emulsions: Physicochemical Principles of Formulation. J. Disp. Sci. Technol. 2002, 23, 1–22. DOI: 10.1080/01932690208984184.
  • Li, Z. F.; Xiao, M. D.; Wang, J. F.; Ngai, T. Pure Protein Scaffolds from Pickering High Internal Phase Emulsion Template. Macromol. Rapid Comm. 2013, 34, 169–174. DOI: 10.1002/marc.201200553.
  • Xu, Y. T.; Tang, C. H.; Xun, L. T.; Hai, L. R. Ovalbumin as an Outstanding Pickering Nanostabilizer for High Internal Phase Emulsions. J. Agri. Food Chem. 2018, 66, 8795–8804. DOI: 10.1021/acs.jafc.8b02183.
  • Huang, X. N.; Zhu, J. J.; Xi, Y. K.; Yin, S. W.; Ngai, T.; Yang, X. Q. Protein-Based Pickering High Internal Phase Emulsions as Nutraceutical Vehicles of and the Template for Advanced Materials: A Perspective Paper. J. Agri. Food Chem. 2019, 67, 9719–9726. DOI: 10.1021/acs.jafc.9b03356.
  • Perrin, E.; Bizot, H.; Cathala, B.; Capron, I. Chitin Nanocrystals for Pickering High Internal Phase Emulsions. Biomacromolecules 2014, 15, 3766–3771. DOI: 10.1021/bm5010417.
  • Yang, T.; Zheng, J.; Zheng, B. S.; Liu, F.; Wang, S. J.; Tang, C. H. High Internal Phase Emulsions Stabilized by Starch Nanocrystals. Food Hydrocolloids 2018, 82, 230–238. DOI: 10.1016/j.foodhyd.2018.04.006.
  • Hu, Y. Q.; Yin, S. W.; Zhu, J. H.; Qi, J. R.; Guo, J.; Wu, L. Y.; Tang, C. H.; Yang, X. Q. Fabrication and Characterization of Novel Pickering Emulsions and Pickering High Internal Emulsions Stabilized by Gliadin Colloidal Particles. Food Hydrocolloids 2016, 61, 300–310. DOI: 10.1016/j.foodhyd.2016.05.028.
  • Jiao, B.; Shi, A. M.; Wang, Q.; Binks, B. P. High-Internal-Phase Pickering Emulsions Stabilized Solely by Peanut-Protein-Isolate Microgel Particles with Multiple Potential Applications. Angew. Chem. Int. Ed. Engl. 2018, 57, 9274–9278. DOI: 10.1002/anie.201801350.
  • Patel, A. R.; Rodriguez, Y.; Lesaffer, A.; Dewettinck, K. High Internal Phase Emulsion Gels (HIPE-Gels) Prepared Using Food-Grade Components. RSC Adv. 2014, 4, 18136–18140. DOI: 10.1039/C4RA02119C.
  • Zamani, S.; Malchione, N.; Selig, M. J.; Abbaspourrad, A. Formation of Shelf Stable Pickering High Internal Phase Emulsions (HIPE) through the Inclusion of Whey Protein Microgels. Food Funct. 2018, 9, 982–990. DOI: 10.1039/c7fo01800b.
  • Wijaya, W.; van der Meeren, P.; Wijaya, C. H.; Patel, A. R. High Internal Phase Emulsions Stabilized Solely by Whey Protein Isolate-Low Methoxyl Pectin Complexes: Effect of pH and Polymer Concentration. Food Funct. 2017, 8, 584–594. DOI: 10.1039/c6fo01027j.
  • Zhou, F. Z.; Huang, X. N.; Wu, Z. L.; Yin, S. W.; Zhu, J. H.; Tang, C. H.; Yang, X. Q. Fabrication of Zein/Pectin Hybrid Particle-Stabilized Pickering High Internal Phase Emulsions with Robust and Ordered Interface Architecture. J. Agr. Food Chem. 2018, 66, 11113–11123. DOI: 10.1021/acs.jafc.8b03714.
  • Dai, L.; Yang, S. F.; Wei, Y.; Sun, C. X.; McClements, D. J.; Mao, L. K.; Gao, Y. X. Development of Stable High Internal Phase Emulsions by Pickering Stabilization: Utilization of Zein-Propylene Glycol Alginate-Rhamnolipid Complex Particles as Colloidal Emulsifiers. Food Chem. 2019, 275, 246–254. DOI: 10.1016/j.foodchem.2018.09.122.
  • Zembyla, M.; Murray, B. S.; Radford, S. J.; Sarkar, A. Water-in-Oil Pickering Emulsions Stabilized by an Interfacial Complex of Water-Insoluble Polyphenol Crystals and Protein. J. Colloid Interf. Sci. 2019, 548, 88–99. DOI: 10.1016/j.jcis.2019.04.010.
  • Binks, B. P.; Liu, W.; Rodrigues, J. A. Novel Stabilization of Emulsions via the Heteroaggregation of Nanoparticles. Langmuir 2008, 24, 4443–4446. DOI: 10.1021/la800084d.
  • Liu, L.; Ngai, T. Pickering Emulsions Stabilized by Binary Mixtures of Colloidal Particles: Synergies between Contrasting Properties. Langmuir 2022, 38, 13322–13329. DOI: 10.1021/acs.langmuir.2c02338.
  • Sun, G. Q.; Guo, T.; Luo, J.; Liu, R.; Ngai, T.; Binks, B. P. Phase Inversion of Pickering Emulsions Induced by Interfacial Electrostatic Attraction. Langmuir 2023, 39, 1386–1393. DOI: 10.1021/acs.langmuir.2c02048.
  • Swetha, M.; Sahithi, K.; Moorthi, A.; Srinivasan, N.; Ramasamy, K.; Selvamurugan, N. Biocomposites Containing Natural Polymers and Hydroxyapatite for Bone Tissue Engineering. Int. J. Biol. Macromol. 2010, 47, 1–4. DOI: 10.1016/j.ijbiomac.2010.03.015.
  • Uskokovic, V.; Uskokovic, D. P. Nanosized Hydroxyapatite and Other Calcium Phosphates: Chemistry of Formation and Application as Drug and Gene Delivery Agents. J. Biomed. Mater. Res. B 2011, 96, 152–191.
  • Sadat-Shojai, M.; Khorasani, M. T.; Dinpanah-Khoshdargi, E.; Jamshidi, A. Synthesis Methods for Nanosized Hydroxyapatite with Diverse Structures. Acta Biomater. 2013, 9, 7591–7621. DOI: 10.1016/j.actbio.2013.04.012.
  • Fujii, S.; Okada, M.; Sawa, H.; Furuzono, T.; Nakamura, Y. Hydroxyapatite Nanoparticles as Particulate Emulsifier: Fabrication of Hydroxyapatite-Coated Biodegradable Microspheres. Langmuir 2009, 25, 9759–9766. DOI: 10.1021/la901100z.
  • Fujii, S.; Okada, M.; Nishimura, T.; Maeda, H.; Sugimoto, T.; Hamasaki, H.; Furuzono, T.; Nakamura, Y. Hydroxyapatite-Armored Poly(ε-Caprolactone) Microspheres and Hydroxyapatite Microcapsules Fabricated via a Pickering Emulsion Route. J. Colloid Interf. Sci. 2012, 374, 1–8. DOI: 10.1016/j.jcis.2012.01.058.
  • Fujii, S.; Okada, M.; Furuzono, T. Hydroxyapatite Nanoparticles as Stimulus-Responsive Particulate Emulsifiers and Building Block for Porous Materials. J. Colloid Interf. Sci. 2007, 315, 287–296. DOI: 10.1016/j.jcis.2007.06.071.
  • Hu, Y.; Gao, H.; Du, Z.; Liu, Y.; Yang, Y.; Wang, C. Y. Pickering High Internal Phase Emulsion-Based Hydroxyapatite–Poly(e-Caprolactone) Nanocomposite Scaffolds. J. Mater. Chem. B 2015, 3, 3848–3857. DOI: 10.1039/c5tb00093a.
  • Hu, Y.; Gu, X. Y.; Yang, Y.; Huang, J.; Hu, M.; Chen, W. K.; Tong, Z.; Wang, C. Y. Facile Fabrication of Poly(L-Lactic Acid)-Grafted Hydroxyapatite/Poly(Lactic-co-Glycolic Acid) Scaffolds by Pickering High Internal Phase Emulsion Templates. ACS Appl. Mater. Inter. 2014, 6, 17166–17175. DOI: 10.1021/am504877h.
  • Liu, Q.; deWijn, J. R.; Bakker, D.; vanBlitterswijk, C. A. Surface Modification of Hydroxyapatite to Introduce Interfacial Bonding with Polyactive (TM) 70/30 in a Biodegradable Composite. J. Mater. Sci. Mater. M 1996, 7, 551–557. DOI: 10.1007/BF00122178.
  • Wilson, O. C.; Hull, J. R. Surface Modification of Nanophase Hydroxyapatite with Chitosan. Mat. Sci. Eng. C. Bio. S 2008, 28, 434–437. DOI: 10.1016/j.msec.2007.04.005.
  • Ribeiro, A.; Lopes, J. C. B.; Dias, M. M.; Barreiro, M. F. Pickering Emulsions Based in Inorganic Solid Particles: From Product Development to Food Applications. Molecule 2023, 28, 2504. DOI: 10.3390/molecules28062504.
  • Zhou, S. Z.; Bismarck, A.; Steinke, J. H. G. Interconnected Macroporous Glycidyl Methacrylate-Grafted Dextran Hydrogels Synthesised from Hydroxyapatite Nanoparticle Stabilised High Internal Phase Emulsion Templates. J. Mater. Chem. 2012, 22, 18824–18829. DOI: 10.1039/c2jm33294a.
  • Liu, Y.; Zhang, H.; Zhang, W.; Binks, B. P.; Cui, Z.; Jiang, J. Z. Charge Density Overcomes Steric Hindrance of Ferrocene Surfactant in Switchable Oil-in-Dispersion Emulsions. Angew. Chem. Int. Ed. Engl. 2023, 62, e202210050. DOI: 10.1002/anie.202210050.
  • Zhang, W.; Binks, B. P.; Jiang, J. Z.; Cui, Z. Smart Emulsions Stabilized by a Multi-Headgroup Surfactant Tolerant to High Concentrations of Acids and Salts. Angew. Chem. Int. Ed. Engl. 2023, 62, e202310743. DOI: 10.1002/anie.202310743.
  • Kosmulski, M. The pH Dependent Surface Charging and Points of Zero Charge. VII Update. Adv. Colloid Interface Sci. 2018, 251, 115–138. DOI: 10.1016/j.cis.2017.10.005.
  • Li, Z. F.; Ming, T.; Wang, J. F.; Ngai, T. High Internal Phase Emulsions Stabilized Solely by Microgel Particles. Angew. Chem. Int. Ed. Engl. 2009, 48, 8490–8493. DOI: 10.1002/anie.200902103.
  • Zhu, Y.; Lu, L. H.; Gao, J.; Cui, Z. G.; Binks, B. P. Effect of Trace Impurities in Triglyceride Oils on Phase Inversion of Pickering Emulsions Stabilized by CaCO3 Nanoparticles. Colloid Surface A 2013, 417, 126–132. DOI: 10.1016/j.colsurfa.2012.10.043.
  • Han, C. H.; Waclawik, E. R.; Yang, X. F.; Meng, P.; Yang, H. Q.; Sun, Z. Q.; Xu, J. S. Reversible Switching of the Amphiphilicity of Organic-Inorganic Hybrids by Adsorption-Desorption Manipulation. J. Phys. Chem. C 2019, 123, 21097–21102. DOI: 10.1021/acs.jpcc.9b07040.
  • Wang, W.; Efrima, S.; Regev, O. Directing Oleate Stabilized Nanosized Silver Colloids into Organic Phases. Langmuir 1998, 14, 602–610. DOI: 10.1021/la9710177.
  • Wang, W.; Chen, X.; Efrima, S. Silver Nanoparticles Capped by Long-Chain Unsaturated Carboxylates. J. Phys. Chem. B 1999, 103, 7238–7246. DOI: 10.1021/jp991101q.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.