21
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Nanoporous carbonaceous materials (biochar and activated carbon): recent progress and potential applications for arsenic removal

ORCID Icon, &
Received 20 Dec 2023, Accepted 13 Jun 2024, Published online: 24 Jun 2024

References

  • Iliasov, A.; Starkov, V.; Gosteva, E. Influence of Micro-and Nanoporous Silicon Layers with Different Depth and Pore Morphology on Contact Angle, Adhesion and Viability of Cells. Silicon. 2023, 15, 3877–3881. DOI: 10.1007/s12633-023-02300-1.
  • Cheng, Y.; Wang, J.; Yuan, J.; Xu, J. Experimental Studies on Boiling Heat Transfer and Friction Characteristics in Evaporator with Double-Layer Micro/Nano Porous Wick. Appl. Therm. Eng. 2023, 221, 119901. DOI: 10.1016/j.applthermaleng.2022.119901.
  • Cadiau, A.; Adil, K.; Bhatt, P.-M.; Belmabkhout, Y.; Eddaoudi, M. A Metal-Organic Framework–Based Splitter for Separating Propylene from Propane. Science. 2016, 353, 137–140. DOI: 10.1126/science.aaf6323.
  • Priya, A.-K.; Gnanasekaran, L.; Kumar, P.-S.; Jalil, A.-A.; Hoang, T.-K.-A.; Rajendran, S.; Soto-Moscoso, M.; Balakrishnan, D. Recent Trends and Advancements in Nanoporous Membranes for Water Purification. Chemosphere. 2022, 303, 135205. DOI: 10.1016/j.chemosphere.2022.135205.
  • González, C.-M.-O.; Kharisov, B.-I.; Kharissova, O.-V.; Quezada, T.-E.-S. Synthesis and Applications of MOF-Derived Nanohybrids: A Review. Mater. Today: Proc. 2021, 46, 3018–3029. DOI: 10.1016/j.matpr.2020.12.1231.
  • Meng, F.; Zheng, Y.; Wang, H.; Chen, L. Study on Acoustic Performance for Diatom Frustule with Nanoporous Structure. J. Bionic Eng. 2023, 20, 1656–1669. DOI: 10.1007/s42235-023-00337-x.
  • Wang, X.; Liu, J.; Hu, B.; Li, Z.; Zhang, B. Wave Propagation in Porous Functionally Graded Piezoelectric Nanoshells Resting on a Viscoelastic Foundation. Physica E: Low-Dimens. Syst. Nanostruct. 2023, 151, 115615. DOI: 10.1016/j.physe.2022.115615.
  • Salem, S.-S.; Hammad, E.-N.; Mohamed, A.-A.; El-Dougdoug, W. A Comprehensive Review of Nanomaterials: Types, Synthesis, Characterization, and Applications. Biointerface Res. Appl. Chem. 2022, 13, 41. DOI: 10.33263/BRIAC131.041.
  • Parlayici, S.; Eskizeybek, V.; Avcı, A.; Pehlivan, E. Removal of Chromium (VI) Using Activated Carbon-Supported-Functionalized Carbon Nanotubes. J. Nanostruct. Chem. 2015, 5, 255–263. DOI: 10.1007/s40097-015-0156-z.
  • Gao, Q.; He, Y.; Ni, L.; Ren, H.; Su, M.; Rong, S.; Liu, Z. Evaluation of Potassium Ferrate Activated Fe-N-Modified Carbons from Bamboo Shoot Shells for Arsenic Removal. Ind. Crop.Prod. 2024, 209, 117952. DOI: 10.1016/j.indcrop.2023.117952.
  • Zhao, H.; Jiao, X.; Wang, M.; He, L.; Yao, Y.; Liu, Z.; Chen, Y. Enhancing Performance of Arsenic Adsorption through Ce‐Modified Activated Carbon Derived from Bamboo Shoot Shells. ChemistrySelect. 2024, 9, e202305063. DOI: 10.1002/slct.202305063.
  • Ahmad, A.; Al-Swaidan, H.-M.; Alghamdi, A.-H.; Alotaibi, K.-M.; Hatshan, M.-R.; Haider, S.; Khan, I. Facile Synthesis of Mesoporous Active Carbon from the Valorisation of Biomass Waste and Assessment of Sequester Efficiency of Arsenic (As) from Water. J. Anal. Appl. Pyrolysis. 2024, 177, 106304. DOI: 10.1016/j.jaap.2023.106304.
  • Sun, Y.; Yu, F.; Han, C.; Houda, C.; Hao, M.; Wang, Q. Research Progress on Adsorption of Arsenic from Water by Modified Biochar and Its Mechanism: A Review. Water. 2022, 14, 1691. DOI: 10.3390/w14111691.
  • Zhang, W.; Cho, Y.; Vithanage, M.; Shaheen, S.-M.; Rinklebe, J.; Alessi, D.-S.; Hou, C.-H.; Hashimoto, Y.; Withana, P.-A.; Ok, Y. S. Arsenic Removal from Water and Soils Using Pristine and Modified Biochars. Biochar 2022, 4, 55. DOI: 10.1007/s42773-022-00181-y.
  • Chatzimichailidou, S.; Xanthopoulou, M.; Tolkou, A.-K.; Katsoyiannis, I.-A. Biochar Derived from Rice by-Products for Arsenic and Chromium Removal by Adsorption: A Review. J. Compos. Sci. 2023, 7, 59. DOI: 10.3390/jcs7020059.
  • Liu, J.-X.; Zhou, G.-B.; Chen, S.-J.; Chen, Z. Arsenic Compounds: Revived Ancient Remedies in the Fight against Human Malignancies. Curr. Opin. Chem. Biol. 2012, 16, 92–98. DOI: 10.1016/j.cbpa.2012.01.015.
  • Hao, L.; Liu, M.; Wang, N.; Li, G. A Critical Review on Arsenic Removal from Water Using Iron-Based Adsorbents. RSC Adv. 2018, 8, 39545–39560. DOI: 10.1039/C8RA08512A.
  • Zarić, N.-M.; Braeuer, S.; Goessler, W. Arsenic Speciation Analysis in Honey Bees for Environmental Monitoring. J. Hazard. Mater. 2022, 432, 128614. DOI: 10.1016/j.jhazmat.2022.128614.
  • Wu, S.; Yang, T.; Mai, J.; Tang, L.; Liang, P.; Zhu, M.; Huang, C.; Li, Q.; Cheng, X.; Liu, M.; Ma, J. Enhanced Removal of Organoarsenic by Chlorination: Kinetics, Effect of Humic Acid, and Adsorbable Chlorinated Organoarsenic. J. Hazard. Mater. 2022, 422, 126820. DOI: 10.1016/j.jhazmat.2021.126820.
  • Yin, H.; Kong, M.; Gu, X.; Chen, H. Removal of Arsenic from Water by Porous Charred Granulated Attapulgite-Supported Hydrated Iron Oxide in Bath and Column Modes. J. Clean. Prod. 2017, 166, 88–97. DOI: 10.1016/j.jclepro.2017.08.026.
  • IARC (International Agency for Research on Cancer). Summaries and Evaluations: Arsenic and Arsenic Compounds (Group 1). International Agency for Research on Cancer: Lyon, 1987; p. 100 (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans).
  • Das, D.; Nandi, B.-K. Arsenic Removal from Tap Water by Electrocoagulation: Investigation of Process Parameters, Kinetic Analysis, and Operating Cost. J. Dispers. Sci. Technol. 2021, 42, 328–337. DOI: 10.1080/01932691.2019.1681280.
  • World Health Organization (WHO). Guidelines for Drinking Water Quality. WHO: Geneva, 1993. Vol 1. 2nd ed.
  • United States Environmental Protection Agency (USEPA). Arsenic in drinking water, 2013.
  • Khanzada, A.-K.; Al-Hazmi, H.-E.; Śniatała, B.; Joseph, T.-M.; Majtacz, J.; Abdulrahman, S. A.; Albaseer, S.-S.; Kurniawan, T.-A.; Ahar, Z.-R.; Habibzadeh, S.; Mąkinia, J. Hydrochar-Nanoparticle Integration for Arsenic Removal from Wastewater: Challenges, Possible Solutions, and Future Horizon. Environ. Res. 2023, 238, 117164. DOI: 10.1016/j.envres.2023.117164.
  • Dilpazeer, F.; Munir, M.; Baloch, M.-Y.-J.; Shafiq, I.; Iqbal, J.; Saeed, M.; Abbas, M.-M.; Shafique, S.; Aziz, K.-H.-H.; Mustafa, A.; Mahboob, I. A Comprehensive Review of the Latest Advancements in Controlling Arsenic Contaminants in Groundwater. Water. 2023, 15, 478. DOI: 10.3390/w15030478.
  • Sharma, P.-K.; Kumar, R.; Singh, R.-K.; Sharma, P.; Ghosh, A. Review on Arsenic Removal Using Biochar-Based Materials. Groundw. Sustain. Dev. 2022, 17, 100740. DOI: 10.1016/j.gsd.2022.100740.
  • Jang, E.-S.; Kang, C.-W. Investigation of the Pore Structure and Sound-Absorbing Capability of the Chinese Parasol Tree (Firmiana Simplex (L.) W. Wight) and Chinese Tulip Poplar (Liriodendron Chinense) Transverse Sections as Eco-Friendly, Porous, Sound-Absorbing Materials. J. Porous Mater. 2022, 29, 1791–1796. DOI: 10.1007/s10934-022-01289-z.
  • Wang, H.; Tan, D.; Liu, Z.; Yin, H.; Wen, G. On Crashworthiness of Novel Porous Structure Based on Composite TPMS Structures. Eng. Struct. 2022, 252, 113640. DOI: 10.1016/j.engstruct.2021.113640.
  • Genli, N.; Kutluay, S.; Baytar, O.; Şahin, Ö. Preparation and Characterization of Activated Carbon from Hydrochar by Hydrothermal Carbonization of Chickpea Stem: An Application in Methylene Blue Removal by RSM Optimization. Int. J. Phytorem. 2022, 24, 88–100. DOI: 10.1080/15226514.2021.1926911.
  • Liang, Q.; Liu, Y.; Chen, M.; Ma, L.; Yang, B.; Li, L.; Liu, Q. Optimized Preparation of Activated Carbon from Coconut Shell and Municipal Sludge. Mater. Chem. Phys. 2020, 241, 122327. DOI: 10.1016/j.matchemphys.2019.122327.
  • Tian, Y.; Zhong, S.; Zhu, X.; Huang, A.; Chen, Y.; Wang, X. Mesoporous Carbon Spheres: Synthesis, Surface Modification and Neutral Red Adsorption. Mater. Lett. 2015, 161, 656–660. DOI: 10.1016/j.matlet.2015.09.055.
  • Pehlivan, E.; Parlayıcı, Ş. Fabrication of a Novel Biopolymer‐Based Nanocomposite (nanotio2‐Chitosan‐Plum Kernel Shell) and Adsorption of Cationic Dyes. J. Chem. Tech. Biotech. 2021, 96, 3378–3387. DOI: 10.1002/jctb.6893.
  • Kang, J.-G.; Jang, H.; Ma, J.; Yang, Q.; Hattar, K.; Diao, Z.; Yuan, R.; Zuo, J.; Sinha, S.; Cahill, D.-G.; Braun, P.-V. Ultralow Thermal Conductivity in Nanoporous Crystalline Fe3O4. J. Phys. Chem. C. 2021, 125, 6897–6908. DOI: 10.1021/acs.jpcc.1c00411.
  • Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845–854. DOI: 10.1038/nmat2297.
  • Kumaresan, M.; Riyazuddin, P. Overview of Speciation Chemistry of Arsenic. Curr. Sci. 2001, 80, 837–846. https://www.jstor.org/stable/24105734.
  • Dousova, B.; Machovic, V.; Kolousek, D.; Kovanda, F.; Dornicak, V. Sorption of As(V) Species from Aqueous Systems. Water Air Soil Poll. 2003, 149, 251–267. DOI: 10.1023/A:1025632005981.
  • U.S. EPA. Arsenic Treatment Technologies for Soil, Waste, and Water. U.S. EPA/National Service Center for Environmental Publications: Cincinnati. 2002.
  • U.S. EPA. Workshop on Managing Arsenic Risks to the Environment: Characterization of Waste, Chemistry, and Treatment and Disposal, 2003.
  • Mohan, D.; Charles, U.; Pittman Jr, A. Arsenic Removal from Water/Wastewater Using Adsorbents—A Critical Review. J. Hazard. Mater. 2007, 142, 1–53. DOI: 10.1016/j.jhazmat.2007.01.006.
  • Chiban, M.; Zerbet, M.; Carja, G.; Sinan, F. Application of Low-Cost Adsorbents for Arsenic Removal: A Review. J. Environ. Chem. Ecotoxicol. 2012, 4(5), 91–102. DOI: 10.5897/JECE11.013.
  • Smedley, P.-L.; Kinniburgh, D.-G. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. App. Geochem. 2002, 17, 517–568. DOI: 10.1016/S0883-2927(02)00018-5.
  • World Health Organization (WHO). Arsenic in Drinking-Water. WHO: Geneva, 2011. p. 16.
  • Pillai, P.; Kakadiya, N.; Timaniya, Z.; Dharaskar, S.; Sillanpaa, M. Removal of Arsenic Using Iron Oxide Amended with Rice Husk Nanoparticles from Aqueous Solution. Mater. Today Proc. 2020, 28, 830–835. DOI: 10.1016/j.matpr.2019.12.307.
  • Nejad, M.-S.; Sheibani, H. Super-Efficient Removal of Arsenic and Mercury Ions from Wastewater by Nanoporous Biochar-Supported Poly 2-Aminothiophenol. J. Environ. Chem. Eng. 2022, 10, 107363. DOI: 10.1016/j.jece.2022.107363.
  • Prajapati, A.-K.; Mondal, M.-K. Hazardous As (III) Removal Using Nanoporous Activated Carbon of Waste Garlic Stem as Adsorbent: Kinetic and Mass Transfer Mechanisms. Korean J. Chem. Eng. 2019, 36, 1900–1914. DOI: 10.1007/s11814-019-0376-x.
  • Pontius, F.-W.; Brown, K.-G.; Chen, C.-J. Health Implications of Arsenic in Drinking-Water. J. Am. Water Works Assoc 1994, 86, 52–63. DOI: 10.1002/j.1551-8833.1994.tb06246.x.
  • Jain, C.-K.; Ali, I. Arsenic: Occurrence, Toxicity and Speciation Techniques. Water Res. 2000, 34, 4304–4312. DOI: 10.1016/S0043-1354(00)00182-2.
  • Jekel, M.; Amy, G. Arsenic Removal during Drinking Water Treatment. Inter. Sci. Drink. Water Treat. 2006, 10, 193–207.
  • Mandal, B.-K.; Suzuki, K.-T. Arsenic Round the World: A Review. Talanta. 2002, 58, 201–235. DOI: 10.1016/S0039-9140(02)00268-0.
  • Ferguson, J.-F.; Gavis, J. A Review of the Arsenic Cycle in Natural Waters. Water Res. 1972, 6, 1259–1274. DOI: 10.1016/0043-1354(72)90052-8.
  • Liu, R.; Qu, J. Review on Heterogeneous Oxidation and Adsorption for Arsenic Removal from Drinking Water. J. Environ. Sci. 2021, 110, 178–188. DOI: 10.1016/j.jes.2021.04.008.
  • Chiavola, A.; D’Amato, E.; Sirini, P.; Caretti, C.; Gori, R. Arsenic Removal from a Highly Contaminated Groundwater by a Combined Coagulation-Filtration-Adsorption Process. Water. Air. Soil Pollut. 2019, 230, 87. DOI: 10.1007/s11270-019-4142-9.
  • Senn, A. C.; Hug, S.-J.; Kaegi, R.; Hering, J.-G.; Voegelin, A. Arsenate co-Precipitation with Fe (II) Oxidation Products and Retention or Release during Precipitate Aging. Water Res. 2018, 131, 334–345. DOI: 10.1016/j.watres.2017.12.038.
  • Dudek, S.; Kołodyńska, D. Arsenic (V) removal on the Lanthanum-Modified Ion Exchanger with Quaternary Ammonium Groups Based on Iron Oxide. J. Mol. Liq. 2022, 347, 117985. DOI: 10.1016/j.molliq.2021.117985.
  • Pathan, S.; Pandita, N.; Kishore, N. Acid Functionalized-Nanoporous Carbon/MnO2 Composite for Removal of Arsenic from Aqueous Medium. Arab. J. Chem. 2019, 12, 5200–5211. DOI: 10.1016/j.arabjc.2016.12.011.
  • Asere, T.-G.; Stevens, C.-V.; Du Laing, G. Use of (Modified) Natural Adsorbents for Arsenic Remediation: A Review. Sci. Total Environ. 2019, 676, 706–720. DOI: 10.1016/j.scitotenv.2019.04.237.
  • Mohan, D.; Dey, S.; Dwivedi, S.-B.; Shukla, S.-P. Adsorption of Arsenic Using Low Cost Adsorbents: Guava Leaf Biomass, Mango Bark and Bagasse. Curr. Sci. 2019, 117, 00113891. https://www.jstor.org/stable/27138314.
  • Lorenz, K.; Lal, R. Biochar Application to Soil for Climate Change Mitigation by Soil Organic Carbon Sequestration. J. Plant Nutr. Soil Sci. 2014, 177, 651–670. DOI: 10.1002/jpln.201400058.
  • Tan, X.; Liu, Y.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of Biochar for the Removal of Pollutants from Aqueous Solutions. Chemosphere. 2015, 125, 70–85. DOI: 10.1016/j.chemosphere.2014.12.058.
  • Zhang, W.; Mao, S.; Chen, H.; Huang, L.; Qiu, R. Pb(II) and Cr(VI)Sorption by Biochars Pyrolyzed from the Municipal Wastewater Sludge under Different Heating Conditions. Bioresour. Technol. 2013, 147, 545–552. DOI: 10.1016/j.biortech.2013.08.082.
  • Lehmann, J. Bio‐Energy in the Black. Fron. Ecol. Environ. 2007, 5, 381–387. DOI: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2.
  • Mao, J.-D.; Johnson, R. L.; Lehmann, J.; Olk, D. C.; Neves, E. G.; Thompson, M. L.; Schmidt-Rohr, K. Abundant and Stable Char Residues in Soils: Implications for Soil Fertility and Carbon Sequestration. Environ. Sci. Technol. 2012, 46, 9571–9576. DOI: 10.1021/es301107c.
  • Alma, M.-H.; Altıkat, A. Biochar and Soil Physical Properties. J. Instit. Sci. Technol. 2021, 2599–2612. DOI: 10.2136/sssaj2017.01.0017.
  • Chausali, N.; Saxena, J.; Prasad, R. Nanobiochar and Biochar Based Nanocomposites: Advances and Applications. J. Agric. Food Res. 2021, 5, 100191. DOI: 10.1016/j.jafr.2021.100191.
  • Alhashimi, H.-A.; Aktas, C.-B. Life Cycle Environmental and Economic Performance of Biochar Compared with Activated Carbon: A Meta-Analysis. Resour. Conserv. Recycl. 2017, 118, 13–26. DOI: 10.1016/j.resconrec.2016.11.016.
  • Song, B.; Cao, X.; Gao, W.; Aziz, S.; Gao, S.; Lam, C.-H.; Lin, R. Preparation of Nano-Biochar from Conventional Biorefineries for High-Value Applications. Renew. Sust. Energ. Rev. 2022, 157, 112057. DOI: 10.1016/j.rser.2021.112057.
  • Khare, P. A Comprehensive Evaluation of Inherent Properties and Applications of Nano-Biochar Prepared from Different Methods and Feedstocks. J.Clean. Prod. 2021, 320, 128759. DOI: 10.1016/j.jclepro.2021.128759.
  • García-Sánchez, F.; Simón-Grao, S.; Martínez-Nicolás, J.-J.; Alfosea-Simón, M.; Liu, C.; Chatzissavvidis, C.; Pérez-Pérez, J.-G.; Cámara-Zapata, J.-M. Multiple Stresses Occurring with Boron Toxicity and Deficiency in Plants. J. Hazard. Mater. 2020, 397, 122713. DOI: 10.1016/j.jhazmat.2020.122713.
  • Liu, G.; Zheng, H.; Jiang, Z.; Zhao, J.; Wang, Z.; Pan, B.; Xing, B. Formation and Physicochemical Characteristics of Nano Biochar: Insight into Chemical and Colloidal Stability. Environ. Sci. Technol. 2018, 52, 10369–10379. DOI: 10.1021/acs.est.8b01481.
  • Yadav, V.; Jain, S.; Mishra, P.; Khare, P.; Shukla, A.-K.; Karak, T.; Singh, A.-K. Amelioration in Nutrient Mineralization and Microbial Activities of Sandy Loam Soil by Short Term Field Aged Biochar. Appl. Soil Ecol. 2019, 138, 144–155. DOI: 10.1016/j.apsoil.2019.01.012.
  • Xiao, J.; Hu, R.; Chen, G. Micro-Nano-Engineered Nitrogenous Bone Biochar Developed with a Ball-Milling Technique for High-Efficiency Removal of Aquatic Cd (II), Cu (II) and Pb (II). J. Hazard. Mater. 2020, 387, 121980. DOI: 10.1016/j.jhazmat.2019.121980.
  • Gan, C.; Liu, Y.; Tan, X.; Wang, S.; Zeng, G.; Zheng, B.; Li, T.; Jiang, Z.; Liu, W. Effect of Porous Zinc–Biochar Nanocomposites on Cr (VI) Adsorption from Aqueous Solution. RSC Adv. 2015, 5, 35107–35115. DOI: 10.1039/C5RA04416B.
  • Saranya, N.; Karishma, S.-K.; Hemapriya, M.; Abishek, V.-S.; Vasantharaj, K.; Sivasubramanian, V. Fabricating a Biochar from Artocarpus Heterophyllus Peels for Methylene Blue Sequestration from Synthetic Wastewater: Isotherm, Kinetic, and Thermodynamic Analysis. J. Dispers. Sci. Technol. 2023, 1–11. DOI: 10.1080/01932691.2023.2297796.
  • Lei, O.; Zhang, R. Effects of Biochars Derived from Different Feedstocks and Pyrolysis Temperatures on Soil Physical and Hydraulic Properties. J. Soils Sediments. 2013, 13, 1561–1572. DOI: 10.1007/s11368-013-0738-7.
  • Burhenne, L.; Messmer, J.; Aicher, T.; Laborie, M.-P. The Effect of the Biomass Components Lignin, Cellulose and Hemicellulose on TGA and Fixed Bed Pyrolysis. J. Anal. Appl. Pyrolysis. 2013, 101, 177–184. DOI: 10.1016/j.jaap.2013.01.012.
  • Sun, J.; He, F.; Pan, Y.; Zhang, Z. Effects of Pyrolysis Temperature and Residence Time on Physicochemical Properties of Different Biochar Types. Acta Agric. Scand. Sect. B Soil Plant Sci. 2017, 67, 12–22. DOI: 10.1080/09064710.2016.1214745.
  • Chen, W.; Gong, M.; Li, K.; Xia, M.; Chen, Z.; Xiao, H.; Fang, Y.; Chen, Y.; Yang, H.; Chen, H. Insight into KOH Activation Mechanism during Biomass Pyrolysis: Chemical Reactions between O-Containing Groups and KOH. Appl. Energy. 2020, 278, 115730. DOI: 10.1016/j.apenergy.2020.115730.
  • Zhang, W.-H.; Zheng, J.; Zheng, P.-P.; Tsang, D.-C.-W.; Qiu, R.-L. Sludge-Derived Biochar for Arsenic(III) Immobilization: Effects of Solution Chemistry on Sorption Behavior. J. Environ. Qual. 2015, 44, 1119–e1126. DOI: 10.2134/jeq2014.12.0536.
  • Wang, S.-S.; Gao, B.; Zimmerman, A.-R.; Li, Y.-C.; Ma, L.-Q.; Harris, W.-G.; Migliaccio, K.-W. Physicochemical and Sorptive Properties of Biochars Derived from Woody and Herbaceous Biomass. Chemosphere. 2015, 134, 257–e262. DOI: 10.1016/j.chemosphere.2015.04.062.
  • Kumar, M.; Xiong, X.; Wan, Z.; Sun, Y.; Tsang, D.-C.; Gupta, J.; Gao, B.; Cao, X.; Tang, J.; Ok, Y. Ball Milling as a Mechanochemical Technology for Fabrication of Novel Biochar Nanomaterials. Bioresour. Technol. 2020, 312, 123613. DOI: 10.1016/j.biortech.2020.123613.
  • Amusat, S.-O.; Kebede, T.-G.; Dube, S.; Nindi, M.-M. Ball-Milling Synthesis of Biochar and Biochar–Based Nanocomposites and Prospects for Removal of Emerging Contaminants: A Review. J. Water Proc. Eng. 2021, 41, 101993. DOI: 10.1016/j.jwpe.2021.101993.
  • Lyu, H.; Gao, B.; He, F.; Zimmerman, A.-R.; Ding, C.; Huang, H.; Tang, J. Effects of Ball Milling on the Physicochemical and Sorptive Properties of Biochar: Experimental Observations and Governing Mechanisms. Environ. Pollut. 2018, 233, 54–63. DOI: 10.1016/j.envpol.2017.10.037.
  • Nath, B.-K.; Chaliha, C.; Kalita, E. Iron Oxide Permeated Mesoporous Rice-Husk Nanobiochar (IPMN) Mediated Removal of Dissolved Arsenic (As): Chemometric Modelling and Adsorption Dynamics. J. Environ. Manag. 2019, 246, 397–409. DOI: 10.1016/j.jenvman.2019.06.008.
  • Ouédraogo, I.-W.; Pehlivan, E.; Tran, H.-T.; Bonzi-Coulibaly, Y.-L.; Zachmann, D.; Bahadir, M. Synthesis of Iron Oxyhydroxide-Coated Rice Straw (IOC-RS) and Its Application in Arsenic (V) removal from Water. J. Water Health. 2015, 13, 726–736. DOI: 10.2166/wh.2015.242.
  • Nguyen, T.-H.; Pham, T.-H.; Nguyen Thi, H.-T.; Nguyen, T.-N.; Nguyen, M.-V.; Dinh, T.; Nguyen, T.; Do, M.-P.; Phuong, T.-Q.; Hoang, T.; et al. Synthesis of Iron-Modified Biochar Derived from Rice Straw and Its Application to Arsenic Removal. J. Chem. 2019, 2019, 1–8. DOI: 10.1155/2019/5295610.
  • Wang, S.-S.; Gao, B.; Zimmerman, A.-R.; Li, Y.-C.; Ma, L.-Q.; Harris, W.-G.; Migliaccio, K.-W. Removal of Arsenic by Magnetic Biochar Prepared from Pinewood and Natural Hematite. Bioresour. Technol. 2015, 175, 391–e395. DOI: 10.1016/j.biortech.2014.10.104.
  • Shao, F.; Zhang, X.; Sun, X.; Shang, J. Antibiotic Removal by Activated Biochar: Performance, Isotherm, and Kinetic Studies. J. Dispers. Sci. Technol. 2021, 42, 1274–1285. DOI: 10.1080/01932691.2020.1737106.
  • Choppala, G.; Bolan, N.; Kunhikrishnan, A.; Bush, R. Differential Effect of Biochar upon Reduction-Induced Mobility and Bioavailability of Arsenate and Chromate. Chemosphere. 2016, 144, 374–381. DOI: 10.1016/J.CHEMOSPHERE.2015.08.043.
  • Bakshi, S.; Banik, C.; Rathke, S.-J.; Laird, D.-A. Arsenic Sorption on Zero-Valent Iron-Biochar Complexes. Water Res. 2018, 137, 153–163. DOI: 10.1016/J.WATRES.2018.03.021.
  • Zhong, D.; Jiang, Y.; Zhao, Z.; Wang, L.; Chen, J.; Ren, S.; Liu, Z.; Zhang, Y.; Tsang, D.-C.-W.; Crittenden, J.-C. pH Dependence of Arsenic Oxidation by Rice-Husk-Derived Bio- Char: Roles of Redox-Active Moieties. Environ. Sci. Technol. 2019, 53, 9034–9044. DOI: 10.1021/acs.est.9b00756.
  • Samsuri, A.-W.; Sadegh‐Zadeh, F.; Seh-Bardan, B.-J. Adsorption of As(III) and As(V) by Fe Coated Biochars and Biochars Produced from Empty Fruit Bunch and Rice Husk. J. Environ. Chem. Eng. 2013, 1, 981–988. DOI: 10.1016/j.jece.2013.08.009.
  • Inyang, M.-I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y.-S.; Cao, X. A Review of Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal. Crit. Rev. Environ. Sci. Technol. 2015, 46, 406–433. DOI: 10.1080/10643389.2015.1096880.
  • Wan, W.; Pepping, T.-J.; Banerji, T.; Chaudhari, S.; Giammar, D.-E. Effects of Water Chemistry on Arsenic Removal from Drinking Water by Electrocoagulation. Water Res. 2011, 45, 384–e392. DOI: 10.1016/j.watres.2010.08.016.
  • Ali, I.; Khan, T.-A.; Asim, M. Removal of Arsenate from Groundwater by Elec- Trocoagulation Method. Environ. Sci. Pollut. Res. 2012, 19, 1668–e1676. DOI: 10.1007/s11356-011-0681-3.
  • McDougall, G.-J. The Physical Nature and Manufacture of Activated Carbon. J. S. Afr. Inst. Min. Metal. 1991, 4, 109. https://hdl.handle.net/10520/AJA0038223X_2042.
  • Shamsuddin, M.-S.; Yusoff, N.-R.-N.; Sulaiman, M.-A. Synthesis and Characterization of Activated Carbon Produced from Kenaf Core Fiber Using H3PO4 Activation. Procedia Chem. 2016, 19, 558–565. DOI: 10.1016/j.proche.2016.03.053.
  • Attia, A. A.; Girgis, B. S.; Fathy, N. A. Removal of Methylene Blue by Carbons Derived from Peach Stones by H3PO4 Activation: Batch and Column Studies. Dyes Pigm. 2006, 76, 282–289. DOI: 10.1016/j.dyepig.2006.08.039.
  • Díaz-Díez, M. A.; Gómez-Serrano, V.; Fernández González, C.; Cuerda-Correa, E. M.; Macías-García, A. Porous Texture of Activated Carbons Prepared by Phosporic Acid Activation of Woods. Appl. Surf. Sci. 2004, 238, 309–313. DOI: 10.1016/j.apsusc.2004.05.228.
  • Lakshmi, S.; Avti, P.-K.; Hegde, G. Activated Carbon Nanoparticles from Biowaste as New Generation Antimicrobial Agents: A Review. Nano-Struct. Nano-Object. 2018, 16, 306–321. DOI: 10.1016/j.nanoso.2018.08.001.
  • Zhang, X.; Kong, L.; Song, G.; Chen, D. Adsorption of Uranium onto Modified Rice Straw Grafted with Oxygen-Containing Groups. Environ. Eng. Sci. 2016, 33, 942–950. DOI: 10.1089/ees.2015.0019.
  • Nam, H.; Choi, W.; Genuino, D.-A.; Capareda, S.-C. Development of Rice Straw Activated Carbon and Its Utilizations. J. Environ. Chem. Eng. 2018, 6, 5221–5229. DOI: 10.1016/j.jece.2018.07.045.
  • Xu, J.; Zong, M.-H.; Fu, S.-Y.; Li, N. Correlation between Physicochemical Properties and Enzymatic Digestibility of Rice Straw Pretreated with Cholinium Ionic Liquids. ACS Sustain. Chem. Eng. 2016, 4, 4340–4345. DOI: 10.1021/acssuschemeng.6b00860.
  • Zhang, L.; Chen, K.; He, L.; Peng, L. Reinforcement of the Bio-Gas Conversion from Pyrolysis of Wheat Straw by Hot Caustic Pre-Extraction. Biotechnol. Biofuels. 2018, 11, 1–12. DOI: 10.1186/s13068-018-1072-5.
  • Om Prakash, M.; Gujjala, R.; Panchal, M.; Ojha, S. Mechanical Characterization of Arhar Biomass Based Porous Nano Activated Carbon Polymer Composites. Polym. Compos. 2020, 41, 3113–3123. DOI: 10.1002/pc.25602.
  • Chen, C.; Xu, L.; Huo, J. B.; Gupta, K.; Fu, M.-L. Simultaneous Removal of Butylparaben and Arsenite by MOF-Derived Porous Carbon Coated Lanthanum Oxide: Combination of Persulfate Activation and Adsorption. Chem. Eng. J. 2020, 391, 123552. DOI: 10.1016/j.cej.2019.123552.
  • Zhu, H.; Jia, Y.; Wu, X.; Wang, H. Removal of Arsenic from Water by Sup- Ported Nano Zero-Valent Iron on Activated Carbon. J. Hazard. Mater. 2009, 172, 1591–1596. DOI: 10.1016/j.jhazmat.2009.08.031.
  • Sharma, A.; Verma, N.; Sharma, A.; Deva, D.; Sankararamakrishnan, N. Iron Doped Phenolic Resin Based Activated Carbon Micro and Nanoparticles by Milling: Synthesis, Characterization and Application in Arsenic Removal. Chem. Eng. Sci. 2010, 65, 3591–3601. DOI: 10.1016/j.ces.2010.02.052.
  • Liu, Z.; Zhang, F.-S.; Sasai, R. Arsenate Removal from Water Using Fe3O4-Loaded Activated Carbon Prepared from Waste Biomass. Chem. Eng. J. 2010, 160, 57–62. DOI: 10.1016/j.cej.2010.03.003.
  • Yao, S.; Liu, Z.; Shi, Z. Arsenic Removal from Aqueous Solutions by Adsorption onto Iron Oxide/Activated Carbon Magnetic Composite. J. Environ. Health Sci. Eng. 2014, 12, 58. DOI: 10.1186/2052-336X-12-58.
  • Priyadarshni, N.; Nath, P.; Chanda, N.; Nagahanumaiah. Sustainable Removal of Arsenate, Arsenite and Bacterial Contamination from Water Using Biochar Stabilized Iron and Copper Oxide Nanoparticles and Associated Mechanism of the Remediation Process. J. Water Process Eng. 2020, 37, 101495. DOI: 10.1016/j.jwpe.2020.101495.
  • Luo, S.; Shen, M.-N.; Wang, F.; Zeng, Q. R.; Shao, J.-H.; Gu, J.-D. Synthesis of Fe3O4- Loaded Porous Carbons Developed from Rice Husk for Removal of Arsenate from Aqueous Solution. Int. J. Environ. Sci. Technol. 2016, 13, 1137–1148. DOI: 10.1007/s13762-016-0955-x.
  • Joshi, S.; Sharma, M.; Kumari, A.; Shrestha, S.; Shrestha, B. Arsenic Removal from Water by Adsorption onto Iron Oxide/Nano-Porous Carbon Magnetic Composite. Appl. Sci. 2019, 9, 3732. DOI: 10.3390/app9183732.
  • Alchouron, J.; Navarathna, C.; Chludil, H.-D.; Dewage, N.-B.; Perez, F.; Hassan, E. B.; Pittman, C.-U.; Vega, A.-S.; Mlsna, T.-E. Assessing South american Guadua Chacoensis Bamboo Biochar and Fe3O4 Nanoparticle Dispersed Analogues for Aqueous Arsenic (V) remediation. Sci. Total Environ. 2020, 706, 135943. DOI: 10.1016/j.scitotenv.2019.135943.
  • Xu, L.; Shu, Z.; Feng, L.; Zhou, J.; Li, T.; Zhao, Z.; Wang, W. Fresh Biomass Derived Biochar with High-Load Zero-Valent Iron Prepared in One Step for Efficient Arsenic Removal. J. Clean. Prod. 2022, 352, 131616. DOI: 10.1016/j.jclepro.2022.131616.
  • Arcibar-Orozco, J.-A.; Josue, D.-B.; Rios-Hurtado, J.-C.; Rangel-Mendez, J.-R. Influence of Iron Content, Surface Area and Charge Distribution in the Arsenic Removal by Activated Carbons. Chem. Eng. J. 2014, 249, 201–209. DOI: 10.1016/j.cej.2014.03.096.
  • Vitela-Rodriguez, A.-V.; Rangel-Mendez, J.-R. Arsenic Removal by Modified Activated Carbons with Iron Hydro (Oxide) Nanoparticles. J. Environ. Manag. 2013, 114, 225–231. DOI: 10.1016/j.jenvman.2012.10.004.
  • Ntim, S.-A.; Mitra, S. Adsorption of Arsenic on Multiwall Carbon Nanotube–Zirconia Nanohybrid for Potential Drinking Water Purification. J. Colloid Interface Sci. 2012, 375, 154–159. DOI: 10.1016/j.jcis.2012.01.063.
  • Wu, J.; Huang, D.; Liu, X.; Meng, J.; Tang, C.; Xu, J. Remediation of As (III) and Cd (II) co-Contamination and Its Mechanism in Aqueous Systems by a Novel Calcium-Based Magnetic Biochar. J. Hazard. Mater. 2018, 348, 10–19. DOI: 10.1016/j.jhazmat.2018.01.011.
  • Wang, S.; Gao, B.; Li, Y.; Creamer, A.-E.; He, F. Adsorptive Removal of Arsenate from Aqueous Solutions by Biochar Supported Zero-Valent Iron Nanocomposite: Batch and Continuous Flow Tests. J. Hazard. Mater. 2017, 322, 172–181. DOI: 10.1016/j.jhazmat.2016.01.052.
  • Zabihi, M.; Omidvar, M.; Motavalizadehkakhky, A.; Zhiani, R. Competitive Adsorption of Arsenic and Mercury on Nano-Magnetic Activated Carbons Derived from Hazelnut Shell. Korean J. Chem. Eng. 2022, 39, 367–376. DOI: 10.1007/s11814-021-0903-4.
  • Gallios, G.-P.; Tolkou, A.-K.; Katsoyiannis, I.-A.; Stefusova, K.; Vaclavikova, M.; Deliyanni, E.-A. Adsorption of Arsenate by Nano Scaled Activated Carbon Modified by Iron and Manganese Oxides. Sustainability. 2017, 9, 1684. DOI: 10.3390/su9101684.
  • Mahanta, N.; Chen, J.-P. A Novel Route to the Engineering of Zirconium Immobilized Nano-Scale Carbon for Arsenate Removal from Water. J. Mater. Chem. A. 2013, 1, 8636–8644. DOI: 10.1039/c3ta10858a.
  • Masood Ul Hasan, I.; Javed, H.; Hussain, M. M.; Shakoor, M. B.; Bibi, I.; Shahid, M.; Farwa, N.; Wei, Q.; Qiao, J.; Niazi.; N. K.;, Xu. Biochar/Nano-Zerovalent Zinc-Based Materials for Arsenic Removal from Contaminated Water. Int. J. Phytorem. 2023, 25, 1155–1164. DOI: 10.1080/15226514.2022.2140778.
  • Baig, S.-A.; Zhu, J.; Muhammad, N.; Sheng, T.; Xu, X. Effect of Synthesis Methods on Magnetic Kans Grass Biochar for Enhanced As (III, V) Adsorption from Aqueous Solutions. Biomass Bioenergy. 2014, 71, 299–310. DOI: 10.1016/j.biombioe.2014.09.027.
  • Hu, X.; Ding, Z.; Zimmerman, A.-R.; Wang, S.; Gao, B. Batch and Column Sorption of Arsenic onto Iron-Impregnated Biochar Synthesized through Hydrolysis. Water Res. 2015, 68, 206–216. DOI: 10.1016/j.watres.2014.10.009.
  • Wang, S.; Gao, B.; Li, Y.; Mosa, A.; Zimmerman, A.-R.; Ma, L. Q.; Harris, W.-G.; Migliaccio, K.-W. Manganese Oxide-Modified Biochars: Preparation, Characterization, and Sorption of Arsenate and Lead. Bioresour. Technol. 2015, 181, 13–17. DOI: 10.1016/j.biortech.2015.01.044.
  • Mubarak, M.-F.; Zayed, A.-M.; Ahmed, H.-A. Activated Carbon/Carborundum@ Microcrystalline Cellulose Core Shell Nano- Composite: Synthesis, Characterization and Application for Heavy Metals Adsorption from Aqueous Solutions. Ind. Crop. Prod. 2022, 182, 114896. DOI: 10.1016/j.indcrop.2022.114896.
  • Zhang, M.; Gao, B. Removal of Arsenic, Methylene Blue, and Phosphate by Biochar/AlOOH Nanocomposite. Chem. Eng. J. 2013, 226, 286–292. DOI: 10.1016/j.cej.2013.04.077.
  • Luo, M.; Huang, C.; Chen, F.; Chen, C.; Li, H. Removal of Aqueous Cr (VI) Using Magnetic-Gelatin Supported on Brassica-Straw Biochar. J. Dispers. Sci. Technol. 2021, 42, 1710–1722. DOI: 10.1080/01932691.2020.1785889.
  • Rahman, H.-L.; Erdem, H.; Sahin, M.; Erdem, M. Iron-Incorporated Activated Carbon Synthesis from Biomass Mixture for Enhanced Arsenic Adsorption. Water. Air. Soil Pollut. 2020, 231, 1–17. DOI: 10.1007/s11270-019-4378-4.
  • Kundu, S.; Gupta, A.-K. Adsorption Characteristics of As(III) from Aqueous Solution on Iron Oxide Coated Cement (IOCC). J. Hazard. Mater. 2006, 142, 97–104. DOI: 10.1016/j.jhazmat.2006.07.059.
  • Magalhães, M.-C.-F. Arsenic. An Environmental Problem Limited by Solubility. Pure Appl. Chem. 2002, 74, 1843–1850. DOI: 10.1351/pac200274101843.
  • Lan, L.-E.; Reina, F.-D.; De Seta, G.-E.; Meichtry, J.-M.; Litter, M.-I. Comparison between Different Technologies (Zerovalent Iron, Coagulation-Flocculation, Adsorption) for Arsenic Treatment at High Concentrations. Water. 2023, 15, 1481. DOI: 10.3390/w15081481.
  • Elcik, H.; Celik, S.-O.; Cakmakci, M.; Özkaya, B. Performance of Nanofiltration and Reverse Osmosis Membranes for Arsenic Removal from Drinking Water. Desalin. Water Treat. 2016, 57, 20422–20429. DOI: 10.1080/19443994.2015.1111812.
  • Rathi, B.-S.; Kumar, P.-S.; Ponprasath, R.; Rohan, K.; Jahnavi, N. An Effective Separation of Toxic Arsenic from Aquatic Environment Using Electrochemical Ion Exchange Process. J. Hazard. Mater. 2021, 412, 125240. DOI: 10.1016/j.jhazmat.2021.125240.
  • Chun, J.; Lee, H.; Lee, S.-H.; Hong, S.-W.; Lee, J.; Lee, C.; Lee, J. Magnetite/Mesocellular Carbon Foam as a Magnetically Recoverable Fenton Catalyst for Removal of Phenol and Arsenic. Chemosphere. 2012, 89, 1230–1237. DOI: 10.1016/j.chemosphere.2012.07.046.
  • Manning, B.-A.; Fendorf, S.-E.; Bostick, B.; Suarez, D.-L. Arsenic (III) Oxidation and Arsenic (V) adsorption Reactions on Synthetic Birnessite. Environ. Sci. Technol. 2002, 36, 976–981. DOI: 10.1021/es0110170.]
  • Ge, X.; Ma, Y.; Song, X.; Wang, G.; Zhang, H.; Zhang, Y.; Zhao, H. β-FeOOH Nanorods/Carbon Foam-Based Hierarchically Porous Monolith for Highly Effective Arsenic Removal. ACS Appl. Mater. Interfaces. 2017, 9, 13480–13490. DOI: 10.1021/acsami.7b01275.
  • Mayo, J. T.; Yavuz, C.; Yean, S.; Cong, L.; Shiple, H.; Yu, W.; Falkner, J.; Kan, A.; Tomson, M.; Colvin, V. L. The Effect of Nanocrystalline Magnetite Size on Arsenic Removal. Sci. Technol. Adv. Mater. 2007, 8, 71–75. DOI: 10.1016/j.stam.2006.10.005.
  • Feng, L.; Cao, M.; Ma, X.; Zhu, Y.; Hu, C. Superparamagnetic High-Surface-Area Fe3O4 Nanoparticles as Adsorbents for Arsenic Removal. J. Hazard. Mater. 2012, 217-218, 439–446. DOI: 10.1016/j.jhazmat.2012.03.073.
  • Babaei, K.; Salimi, S.; Mahmoudabadi, Z.-S.; Tavasoli, A. Synthesis and Application of Chicken Manure Biochar as an Effective Nanoporous Adsorbent for Removal of Arsenic from Wastewater: A Cost-Effective Approach. J. Iran. Chem. Soc. 2023, 20, 541–550. DOI: 10.1007/s13738-022-02686-6.
  • Zhou, Z.; Liu, Y.-G.; Liu, S.-B.; Liu, H.-Y.; Zeng, G.-M.; Tan, X.-F.; Yang, C.-P.; Ding, Y.; Yan, Z.-L.; Cai, X.-X. Sorption Performance and Mechanisms of Arsenic (V) removal by Magnetic Gelatin-Modified Biochar. Chem. Eng. J. 2017, 314, 223–231. DOI: 10.1016/j.cej.2016.12.113.
  • Gupta, A.-K.; Deva, D.; Sharma, A.; Verma, N. Adsorptive Removal of Fluoride by Micro/Nano-Hierarchal Web of Activated Carbon Fibers. Ind. Eng. Chem. Res. 2009, 48, 9697–9707. DOI: 10.1021/ie801688k.
  • Elkady, M.-F.; Hussein, M.-M.; Atiaa, H.-M. Preparation of Nano-Activated Carbon from Carbon Based Material for Copper Decontamination from Wastewater. AJAC. 2015, 3, 31–37. DOI: 10.11648/j.ajac.s.2015030301.15.
  • Kumar, V.; Talreja, N.; Deva, D.; Sankararamakrishnan, N.; Sharma, A.; Verma, N. Development of bi-Metal Doped Micro-and Nano Multi-Functional Polymeric Adsorbents for the Removal of Fluoride and Arsenic (V) from Wastewater. Desalination 2011, 282, 27–38. DOI: 10.1016/j.desal.2011.05.013.
  • Noreen, S.; Abd-Elsalam, K.-A. Biochar- Based Nanocomposites: A Sustainable Tool in Wastewater Bioremediation. Applications of Nanomaterials for Water Purification. Aquananotechnology; Appl. Nanomat. Water Purif. Micro Nano Technol. 2021, 185–200.
  • Greco, C.; Cosentino, U.; Pitea, D.; Moro, G.; Santangelo, S.; Patanè, S.; D'Arienzo, M.; Fiore, M.; Morazzoni, F.; Ruffo, R. Role of the Carbon Defects in the Catalytic Oxygen Reduction by Graphite Nanoparticles: A Spectromagnetic, Electrochemical and Computational Integrated Approach. Phys. Chem. Chem. Phys. 2019, 21, 6021–6032. DOI: 10.1039/c8cp07023g.
  • Naghdi, M.; Taheran, M.; Pulicharla, R.; Rouissi, T.; Brar, S.-K.; Verma, M.; Surampalli, R.-Y. Pine-Wood Derived Nanobiochar for Removal of Carbamazepine from Aqueous Media: Adsorption Behavior and Influential Parameters. Arab. J. Chem. 2019, 12, 5292–5301. DOI: 10.1016/j.arabjc.2016.12.025.
  • Wu, Z.; Li, W.; Webley, P.-A.; Zhao, D. General and Controllable Synthesis of Novel Mesoporous Magnetic Iron Oxide@ Carbon Encapsulates for Efficient Arsenic Removal. Adv. Mater. 2012, 24, 485–491. DOI: 10.1002/adma.201103789.
  • Arcibar-Orozco, J.-A.; Rios-Hurtado, J.-C.; Rangel-Mendez, J.-R. Interactions between Reactive Oxygen Groups on Nanoporous Carbons and Iron Oxyhydroxide Nanoparticles: Effect on Arsenic (V) removal. Adsorption. 2016, 22, 181–194. DOI: 10.1007/s10450-015-9743-z.
  • Arcibar-Orozco, J.-A.; Avalos-Borja, M.; Rangel-Mendez, J.-R. Effect of Phosphate on the Particle Size of Ferric Oxyhydroxides Anchored onto Activated Carbon: As(V) removal from Water. Environ. Sci. Technol. 2012, 46, 9577–9583. DOI: 10.1021/es204696u.
  • Li, L.; Quinlivan, P.-A.; Knappe, D.-R.-U. Effects of Activated Carbon Surface Chemistry and Pore Structure on the Adsorption of Organic Contaminants from Aqueous Solution. Carbon 2002, 40, 2085–2100. DOI: 10.1016/S0008-6223(02)00069-6.
  • Saitua, H.; Gil, R.; Padilla, A.-P. Experimental Investigation on Arsenic Removal with a Nanofiltration Pilot Plant from Naturally Contaminated Groundwater. Desalination. 2011, 274, 1–6. DOI: 10.1016/j.desal.2011.02.044.
  • Maneechakr, P.; Mongkollertlop, S. Investigation on Adsorption Behaviors of Heavy Metal Ions (Cd2+, Cr3+, Hg2+ and Pb2+) through Low-Cost/Active Manganese Dioxide-Modified Magnetic Biochar Derived from Palm Kernel Cake Residue. J. Environ. Chem. Eng. 2020, 8, 104467. DOI: 10.1016/j.jece.2020.104467.
  • Dutta, S.; Manna, K.; Srivastava, S.-K.; Gupta, A.-K.; Yadav, M.-K. Hollow Polyaniline Microsphere/Fe 3 O 4 Nanocomposite as an Effective Adsorbent for Removal of Arsenic from Water. Sci. Rep. 2020, 10, 4982. DOI: 10.1038/s41598-020-61763-z.
  • Velempini, T.; Ahamed, M.-E.-H.; Pillay, K. Heavy-Metal Spent Adsorbents Reuse in Catalytic, Energy and Forensic Applications-A New Approach in Reducing Secondary Pollution Associated with Adsorption. Res. Chem. 2023, 5, 100901. DOI: 10.1016/j.rechem.2023.100901.
  • Stuckman, M.-Y.; Corrigan, L.-N.; Lenhart, J.-J. Biotic Arsenic Release from Spent Adsorbents under Anaerobic Landfill Conditions. Appl. Geochem. 2017, 78, 321–333. DOI: 10.1016/j.apgeochem.2017.01.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.