29
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimization of experimental conditions using central composite design for rifampicin removal

, , , , &
Received 02 Jan 2024, Accepted 13 Jun 2024, Published online: 27 Jun 2024

References

  • Brodie, M. J.; Mintzer, S.; Pack, A. M.; Gidal, B. E.; Vecht, C. J.; Schmidt, D. Enzyme Induction with Antiepileptic Drugs: Cause for Concern? Epilepsia 2013, 54, 11–27. DOI: 10.1111/j.1528-1167.2012.03671.x.
  • Chen, J.; Raymond, K. Roles of Rifampicin in Drug-Drug Interactions: Underlying Molecular Mechanisms Involving the Nuclear Pregnane X Receptor. Ann Clin Microbiol Antimicrob 2006, 5, 3. DOI: 10.1186/1476-0711-5-3.
  • Li, A. P. Chapter II. J Drug – Drug Interaction – Enzyme Induction. Nat. Med. 2004.
  • Zhang, X.; Zhao, H.; Du, J.; Qu, Y.; Shen, C.; Tan, F.; Chen, J.; Quan, X. Occurrence, Removal, and Risk Assessment of Antibiotics in 12 Wastewater Treatment Plants from Dalian, China. Environ Sci. Pollut. Res. 2017, 24, 16478–16487. DOI: 10.1007/s11356-017-9296-7.
  • Bu, Q.; Wang, B.; Huang, J.; Deng, S.; Yu, G. Pharmaceuticals and Personal Care Products in the Aquatic Environment in China: A Review. J. Hazard Mater 2013, 262, 189–211. DOI: 10.1016/j.jhazmat.2013.08.040.
  • Chen, W. Y.; Chen, Y. F.; Tsai, J. M.; Huang, H. M.; Su, Y. C. Epidemiology-Based Wastewater Monitoring for Ecological Risks of Anti-Tuberculosis Drugs Mixture Effects. Sci Total Environ. 2023, 892, 164560. DOI: 10.1016/j.scitotenv.2023.164560.
  • Kul, D. Electrochemical Determination of Rifampicin Based on Its Oxidation Using Multi-Walled Carbon Nanotube-Modified Glassy Carbon Electrodes. Turk. J. Pharm. Sci. 2020, 17, 398–407. DOI: 10.4274/tjps.galenos.2019.33600.
  • Erdem, H. The Application of Different Technologies for Removal of Rifampicin from Aquatic Environments: A Recent Review. Dümf. MD 2022, 1, 145–163. DOI: 10.24012/dumf.1120755.
  • Duarte, J. L. d S.; Solano, A. M. S.; Arguelho, M. L. P. M.; Tonholo, J.; Martínez-Huitle, C. A.; Zanta, C. L. d P. e S. Evaluation of Treatment of Effluents Contaminated with Rifampicin by Fenton, Electrochemical and Associated Processes. J. Water Process Eng. 2018, 22, 250–257. DOI: 10.1016/j.jwpe.2018.02.012.
  • Liu, L.; Xu, Q.; Owens, G.; Chen, Z. Fenton-Oxidation of Rifampicin via a Green Synthesized RGO@nFe/Pd Nanocomposite. J. Hazard Mater 2021, 402, 123544. DOI: 10.1016/j.jhazmat.2020.123544.
  • Kais, H.; Mezenner, N. Y.; Trari, M.; Madjene, F. Photocatalytic Degradation of Rifampicin: Influencing Parameters and Mechanism. Russ. J. Phys. Chem. 2019, 93, 2834–2841. DOI: 10.1134/S0036024419130119.
  • Kais, H.; Mezenner, N. Y.; Bensaadi, Z.; Hamadi, A. Monitoring of an Antituberculosis Drug Degradation under UV Radiation. Russ. J. Phys. Chem. 2022, 96, 2277–2283. DOI: 10.1134/S0036024422100107.
  • Lin, Z.; Weng, X.; Owens, G.; Chen, Z. Simultaneous Removal of Pb(II) and Rifampicin from Wastewater by Iron Nanoparticles Synthesized by a Tea Extract. J. Clean Prod. 2020, 242, 118476. DOI: 10.1016/j.jclepro.2019.118476.
  • Majid, A. F. A.; Dewi, R.; Shahri, N. N. M.; Shahrin, E. W. E. S.; Kusrini, E.; Shamsuddin, N.; Lim, J. W.; Thongratkaew, S.; Faungnawakij, K.; Usman, A. Enhancing Adsorption Performance of Alkali Activated Kaolinite in the Removal of Antibiotic Rifampicin from Aqueous Solution. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132209. DOI: 10.1016/j.colsurfa.2023.132209.
  • Shahrin, E. W. E. S.; Narudin, N. A. H.; Shahri, N. N. M.; Nur, M.; Lim, J. W.; Bilad, M. R.; Mahadi, A. H.; Hobley, J.; Usman, A. A Comparative Study of Adsorption Behavior of Rifampicin, Streptomycin, and Ibuprofen Contaminants from Aqueous Solutions onto Chitosan: Dynamic Interactions, Kinetics, Diffusions, and Mechanisms. Emerg. Contam. 2023, 9, 100199. DOI: 10.1016/j.emcon.2022.100199.
  • Filgueiras, A. L.; Lima, F. R. A.; De Carvalho, D. F.; Meirelles, M. A.; Paschoal, D.; Dos Santos, H. F.; Sanchez-Cortes, S.; Sant’ana, A. C. The Adsorption of Rifampicin on Gold or Silver Surfaces Mediated by 2-Mercaptoethanol Investigated by Surface-Enhanced Raman Scattering Spectroscopy. Vib. Spectrosc. 2016, 86, 75–80. DOI: 10.1016/j.vibspec.2016.06.006.
  • Henrique, D. C.; Quintela, D. U.; Ide, A. H.; Erto, A.; Duarte, J. L. D. S.; Meili, L. Calcined Mytella Falcata Shells as Alternative Adsorbent for Efficient Removal of Rifampicin Antibiotic from Aqueous Solutions. J. Environ. Chem. Eng. 2020, 8, 103782. DOI: 10.1016/j.jece.2020.103782.
  • Kandemir, K.; Piskin, E.; Xiao, J.; Tomas, M.; Capanoglu, E. Fruit Juice Industry Wastes as a Source of Bioactives. J. Agric Food Chem. 2022, 70, 6805–6832. DOI: 10.1021/acs.jafc.2c00756.
  • Porges, R.; Towne, W. W.; Sewage, S.; Wastes, I.; Jan, N.; Wastes, I. Wastes from the Potato Chip Industry All Use Subject to JSTOR Terms and Conditions WASTES. Water Environment Federation 2014, 31, 53–59.
  • Mendoza-Meneses, C. J.; Feregrino-Pérez, A. A.; Gutiérrez-Antonio, C. Potential Use of Industrial Cocoa Waste in Biofuel Production. J. Chem. 2021, 2021, 1–11. DOI: 10.1155/2021/3388067.
  • Handojo, L.; Triharyogi, H.; Indarto, A. Cocoa Bean Shell Waste as Potential Raw Material for Dietary Fiber Powder. Int. J. Recycl. Org. Waste Agricult. 2019, 8, 485–491. DOI: 10.1007/s40093-019-0271-9.
  • Chinniagounder, T.; Shanker, M.; Nageswaran, S. Adsorptive Removal of Crystal Violet Dye Using Agricultural Waste Cocoa (Theobroma cacao) Shell. Res. J. Chem. Sci. 2011, 1, 38–45.
  • Nkuigue Fotsing, P.; Bouazizi, N.; Djoufac Woumfo, E.; Mofaddel, N.; Le Derf, F.; Vieillard, J. Investigation of Chromate and Nitrate Removal by Adsorption at the Surface of an Amine-Modified Cocoa Shell Adsorbent. J. Environ. Chem. Eng. 2021, 9, 104618. DOI: 10.1016/j.jece.2020.104618.
  • Jain, M.; Garg, V. K.; Kadirvelu, K. Investigation of Cr(VI) Adsorption onto Chemically Treated Helianthus Annuus: Optimization Using Response Surface Methodology. Bioresour. Technol. 2011, 102, 600–605. DOI: 10.1016/j.biortech.2010.08.001.
  • Jahangiri, K.; Yousefi, N.; Ghadiri, S. K.; Fekri, R.; Bagheri, A.; Talebi, S. S. Enhancement Adsorption of Hexavalent Chromium onto Modified Fly Ash from Aqueous Solution; Optimization; Isotherm, Kinetic and Thermodynamic Study. J. Dispers Sci. Technol. 2019, 40, 1147–1158. DOI: 10.1080/01932691.2018.1496841.
  • Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. DOI: 10.1021/j100096a001.
  • Cancès, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. DOI: 10.1063/1.474659.
  • Tomasi, J.; Mennucci, B.; Cancès, E. The IEF Version of the PCM Solvation Method: An Overview of a New Method Addressed to Study Molecular Solutes at the QM Ab Initio Level. J. Mol. Struct. Theochem. 1999, 464, 211–226. DOI: 10.1016/S0166-1280(98)00553-3.
  • Favila, A.; Gallo, M.; Glossman-Mitnik, D. CHIH-DFT Determination of the Molecular Structure Infrared Spectra, UV Spectra and Chemical Reactivity of Three Antitubercular Compounds: Rifampicin, Isoniazid and Pyrazinamide. J. Mol. Model 2007, 13, 505–518. DOI: 10.1007/s00894-007-0170-2.
  • Lu, X.; Jiang, J.; Sun, K.; Xie, X. Preparation and Characterization of Sisal Fiber-Based Activated Carbon by Chemical Activation with Zinc Chloride. Bull. Korean Chem. Soc. 2014, 35, 103–110. DOI: 10.5012/bkcs.2014.35.1.103.
  • Pereira, R. G.; Veloso, C. M.; Da Silva, N. M.; De Souza, L. F.; Ferreira Bonomo, R. C.; De Souza, O. A.; da Guarda Souza, M. O.; da Costa Ilhéu Fontan, R. Preparation of Activated Carbons from Cocoa Shells and Siriguela Seeds Using H3PO4 and ZnCL2 as Activating Agents for BSA and α-Lactalbumin Adsorption. Fuel Process. Technol. 2014, 126, 476–486. DOI: 10.1016/j.fuproc.2014.06.001.
  • Ismadji, S.; Bhatia, S. K. Investigation of Network Connectivity in Activated Carbons by Liquid Phase Adsorption. Langmuir. 2000, 16, 9303–9313. DOI: 10.1021/la000578m.
  • Citraningrum, C. H. M.; N, G. I.; S, I. Adsorption Capacity Improvement of Commercially Available Activated Carbon NORIT ROW 0.8 Supra through Thermal Treatment for Phenol Removal. Journal of Environment and Protection Science 2007, 1, 62–74.
  • Putra, E. K.; Pranowo, R.; Sunarso, J.; Indraswati, N.; Ismadji, S. Performance of Activated Carbon and Bentonite for Adsorption of Amoxicillin from Wastewater: Mechanisms, Isotherms and Kinetics. Water Res. 2009, 43, 2419–2430. DOI: 10.1016/j.watres.2009.02.039.
  • Kais, H.; Yeddou Mezenner, N.; Trari, M. Biosorption of Rifampicin from Wastewater Using Cocoa Shells Product. Separat Sci. Technol. 2019, 55, 1984–1993. DOI: 10.1080/01496395.2019.1623255.
  • Tejada, C. N.; Almanza, D.; Villabona, A.; Colpas, F.; Granados, C. Characterization of Activated Carbon Synthesized at Low Temperature from Cocoa Shell (Theobroma Cacao) for Adsorbing Amoxicillin Caracterización De Carbón Activado Sintetizado a Baja Temperatura a Partir De Cáscara De Cacao (Theobroma Cacao) Para La a. Ingeniería Y Competitividad 2017, 54, 45–54. DOI: 10.25100/iyc.v19i2.5292.
  • Jabar, J. M.; Adebayo, M. A.; Owokotomo, I. A.; Odusote, Y. A.; Yılmaz, M. Synthesis of High Surface Area Mesoporous ZnCl2–Activated Cocoa (Theobroma cacao L) Leaves Biochar Derived via Pyrolysis for Crystal Violet Dye Removal. Heliyon 2022, 8, e10873. DOI: 10.1016/j.heliyon.2022.e10873.
  • Karadirek, Ş.; Okkay, H. Statistical Modeling of Activated Carbon Production from Spent Mushroom Compost. J. Ind. Eng. Chem. 2018, 63, 340–347. DOI: 10.1016/j.jiec.2018.02.034.
  • Haaland, P. D. Experimental Design in Biotechnology; Marcel Dekker, Inc.: New York, 1989.
  • Khuri, A. I.; Cornell, J. A. Response Surfaces: Designs and Analyses; Marcel Dekker: New York, 1996.
  • Mourabet, M.; El Rhilassi, A.; El Boujaady, H.; Bennani-Ziatni, M.; Taitai, A. Use of Response Surface Methodology for Optimization of Fluoride Adsorption in an Aqueous Solution by Brushite. Arabian J. Chem. 2014, 10, S3292–S3302. DOI: 10.1016/j.arabjc.2013.12.028.
  • Keramati, M.; Ayati, B. Petroleum Wastewater Treatment Using a Combination of Electrocoagulation and Photocatalytic Process with Immobilized ZnO Nanoparticles on Concrete Surface. Process Safe Environ. Protect. 2019, 126, 356–365. DOI: 10.1016/j.psep.2019.04.019.
  • Hashemian, S.; Salari, K.; Yazdi, Z. A. Preparation of Activated Carbon from Agricultural Wastes (Almond Shell and Orange Peel) for Adsorption of 2-Pic from Aqueous Solution. J. Ind. Eng. Chem. 2014, 20, 1892–1900. DOI: 10.1016/j.jiec.2013.09.009.
  • Abbas, M.; Trari, M. Kinetic, Equilibrium and Thermodynamic Study on the Removal of Congo Red from Aqueous Solutions by Adsorption onto Apricot Stone. Process Safe Environ. Protect 2015, 98, 424–436. DOI: 10.1016/j.psep.2015.09.015.
  • Aksu, Z.; Tunç, Ö. Application of Biosorption for Penicillin G Removal: Comparison with Activated Carbon. Process Biochem. 2005, 40, 831–847. DOI: 10.1016/j.procbio.2004.02.014.
  • Baskaran, P. K.; Venkatraman, B. R.; Hema, M.; Arivoli, S. Adsorption Studies of Copper Ion by Low Cost Activated Carbon. J. Chem. Pharm. Res. 2010, 2, 642–655.
  • Application of Factorial Design for the Optimization of Hexavalent Chromium Removal Using a New Low-Cost Adsorbent: Adsorption Isotherms, Thermodynamic and Kinetic Studies. Biointerface Res. Appl. Chem. 2021, 12, 1247–1262. DOI: 10.33263/BRIAC121.12471262.
  • Weber, W.; Morris, J. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Engrg. Div. 1963, 89, 31–59. DOI: 10.1061/JSEDAI.0000430.
  • Fisal, A.; Wan Mohd Ashri Wan, D.; Mohd Azmier, A.; Rosinah, R. Using Cocoa (Theobroma cacao) Shell-Based Activated Carbon to Remove 4-Nitrophenol from Aqueous Solution: Kinetics and Equilibrium Studies. Chemical Engineering Journal 2011, 178, 461–467. DOI: 10.1016/j.cej.2011.10.044.
  • Liakos, E.; V; Rekos, K.; Giannakoudakis, D. A.; Mitropoulos, A. C.; Fu, J.; Kyzas, G. Z. Activated Porous Carbon Derived from Tea and Plane Tree Leaves Biomass for the Removal of Pharmaceutical Compounds from Wastewaters. 2021. DOI: 10.3390/antibiotics.
  • Mellah, A.; Harik, D. Removal Pharmaceutical Pollutants by Adsorption Competitive Using Powdered Activated Carbon CAP (F400), 2020, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.