8
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optimized electrophoretic zinc oxide coating on SS316L with enhanced hardness and scratch resistance

ORCID Icon & ORCID Icon
Received 06 Jan 2024, Accepted 18 May 2024, Published online: 01 Jul 2024

References

  • Amirtharaj Mosas, K. K.; Chandrasekar, A. R.; Dasan, A.; Pakseresht, A.; Galusek, D. Recent Advancements in Materials and Coatings for Biomedical Implants. Gels 2022, 8, 323. DOI: 10.3390/gels8050323.
  • Khamar, K.; Richmond, F. Testing of Tissue Engineered Products in the US. 2019.
  • Bohara, S.; Suthakorn, J. Surface Coating of Orthopedic Implant to Enhance the Osseointegration and Reduction of Bacterial Colonization. A Review. Biomater. Res. 2022, 26, 26. DOI: 10.1186/s40824-022-00269-3.
  • Davis, R.; Singh, A.; Jackson, M. J.; Coelho, R. T.; Prakash, D.; Charalambous, C. P.; Ahmed, W.; da Silva, L. R. R.; Lawrence, A. A. A Comprehensive Review on Metallic Implant Biomaterials and Their Subtractive Manufacturing. Int. J. Adv. Manuf. Technol. 2022, 120, 1473–1530. DOI: 10.1007/s00170-022-08770-8.
  • Buj-Corral, I.; Tejo-Otero, A.; Fenollosa-Artés, F. Development of Am Technologies for Metals in the Sector of Medical Implants. Metals 2020, 10, 686. DOI: 10.3390/met10050686.
  • Yang, Z.; Yan, B.; Wang, T. Application of Coatings Technology in Titanium Alloy Processing. Equip. Manufact. Technol. 2017, 12, 36–38.
  • Pitchi, C. S.; Priyadarshini, A.; Narala, S. K. R. Influence of Cooling Kinetics on Surface Texture, Hydrophilicity and Scratch Resistance of the Oxide Layers Produced by Thermal Oxidation on Ti-6Al-4V. Surf. Coat. Technol. 2022, 450, 128956. DOI: 10.1016/j.surfcoat.2022.128956.
  • Li, L.; Jia, W.; Ji, V. Phase Transformations Mechanism in Commercially Pure Titanium Subjected to Multiple Laser Shock Peening. Surf. Coat. Technol. 2022, 450, 129010. DOI: 10.1016/j.surfcoat.2022.129010.
  • Raffa, M. L.; Nguyen, V. H.; Hernigou, P.; Flouzat‐Lachaniette, C. H.; Haiat, G. Stress Shielding at the Bone‐Implant Interface: Influence of Surface Roughness and of the Bone‐Implant Contact Ratio. J. Orthop. Res. 2021, 39, 1174–1183. DOI: 10.1002/jor.24840.
  • de Viteri, V. S.; Fuentes, E. Titanium and Titanium Alloys as Biomaterials. Tribol. Fund. Adv. 2013, 1, 154–181. DOI: 10.5772/55860.
  • Wang, N.; Yang, S.; Shi, H.; Song, Y.; Sun, H.; Wang, Q.; Tan, L.; Guo, S. Magnesium Alloys for Orthopedic Applications: A Review on the Mechanisms Driving Bone Healing. J. Magnesium Alloys 2022, 10, 3327–3353. DOI: 10.1016/j.jma.2022.11.014.
  • Tsakiris, V.; Tardei, C.; Clicinschi, F. M. Biodegradable Mg Alloys for Orthopedic Implants–A Review. J. Magnesium Alloys 2021, 9, 1884–1905. DOI: 10.1016/j.jma.2021.06.024.
  • Li, D.; Zhang, D.; Yuan, Q.; Liu, L.; Li, H.; Xiong, L.; Guo, X.; Yan, Y.; Yu, K.; Dai, Y.; et al. In Vitro and in Vivo Assessment of the Effect of Biodegradable Magnesium Alloys on Osteogenesis. Acta Biomater. 2022, 141, 454–465. DOI: 10.1016/j.actbio.2021.12.032.
  • Rujian, S.; Yingchun, G.; Ying, Z. Development of Anti-Corrosion Processing on Magnesium Alloys. Mod. Chem. Appl. 2015, 03, 153. DOI: 10.4172/2329-6798.1000153.
  • Jiang, C. P.; Wibisono, A. T.; Pasang, T. Selective Laser Melting of Stainless Steel 316l with Face-Centered-Cubic-Based Lattice Structures to Produce Rib Implants. Materials (Basel) 2021, 14, 5962. DOI: 10.3390/ma14205962.
  • Fractory. 2020. https://fractory.com/what-is-stainless-steel/.
  • American Metals. https://www.metalshims.com/t-316L-Stainless-Steel-technical-data-sheet.aspx.
  • Combined Metals. https://www.combmet.com/316l-stainless-steel-alloy/.
  • Upmet. https://www.upmet.com/sites/default/files/datasheets/316-316l.pdf.
  • Ghorbani, H.; Abdollah-Zadeh, A.; Bagheri, F.; Poladi, A. Improving the Bio-Corrosion Behavior of AISI316L Stainless Steel through Deposition of Ta-Based Thin Films Using PACVD. Appl. Surf. Sci. 2018, 456, 398–402. DOI: 10.1016/j.apsusc.2018.06.154.
  • Fotovvati, B.; Namdari, N.; Dehghanghadikolaei, A. On Coating Techniques for Surface Protection: A Review. JMMP. 2019, 3, 28. DOI: 10.3390/jmmp3010028.
  • Moreau, D.; Villain, A.; Ku, D. N.; Corté, L. Poly (Vinyl Alcohol) Hydrogel Coatings with Tunable Surface Exposure of Hydroxyapatite. Biomatter 2014, 4, e28764. DOI: 10.4161/biom.28764.
  • Rtec instruments. https://www.tribonet.org/wiki/surface-coating-techniques/.
  • Mehboob, H.; Awais, M.; Khalid, H.; Ch, A. A.; Siddiqi, S. A.; Rehman, I. Polymer-Assisted Deposition of Hydroxyapatite Coatings Using Electrophoretic Technique. Biomed. Eng. Appl. Basis Commun. 2014, 26, 1450073. DOI: 10.4015/S1016237214500732.
  • Atria innovations. - https://www.atriainnovation.com/en/physical-vapor-deposition-pvd/.
  • Hamedani, Y.; Macha, P.; Bunning, T. J.; Naik, R. R.; Vasudev, M. C. Plasma-Enhanced Chemical Vapor Deposition: Where we Are and the Outlook for the Future. Chem. Vapor Depos. 2016, 4, 243–280.
  • Semicore. https://www.semicore.com/news/117-what-is-chemical-vapor-deposition-cvd.
  • The coating company. https://www.bmb-coating.com/coating/coating-methods/.
  • Kravanja, K. A.; Finšgar, M. A Review of Techniques for the Application of Bioactive Coatings on Metal-Based Implants to Achieve Controlled Release of Active Ingredients. Mater. Design 2022, 217, 110653. DOI: 10.1016/j.matdes.2022.110653.
  • Dehghanghadikolaei, A.; Fotovvati, B. Coating Techniques for Functional Enhancement of Metal Implants for Bone Replacement: A Review. Materials (Basel) 2019, 12, 1795. DOI: 10.3390/ma12111795.
  • A&A coatings. https://www.thermalspray.com/popular-thermal-spray-processes-pros-cons-glance/.
  • Amrollahi, P.; Krasinski, J. S.; Vaidyanathan, R.; Tayebi, L.; Vashaee, D. Electrophoretic Deposition (EPD): Fundamentals and Applications from Nano-to Microscale Structures. In Handbook of Nanoelectrochemistry. Springer: India, 2016, pp. 561–591. DOI: 10.1007/978-3-319-15266-0_7.
  • Kang, H.; Park, Y.; Hong, Y.-K.; Yoon, S.; Lee, M.-H.; Ha, D.-H. Solvent-Induced Charge Formation and Electrophoretic Deposition of Colloidal Iron Oxide Nanoparticles. Surf. Interfaces 2021, 22, 100815. DOI: 10.1016/j.surfin.2020.100815.
  • Grande, F.; Tucci, P. Titanium Dioxide Nanoparticles: A Risk for Human Health? Mini Rev. Med. Chem. 2016, 16, 762–769. DOI: 10.2174/1389557516666160321114341.
  • Safi, IN.; Hussein, B. M. A.; Al-Shammari, A. M. Bio-Hybrid Dental Implants Prepared Using Stem Cells with β-TCP-Coated Titanium and Zirconia. J. Periodontal Implant Sci. 2022, 52, 242–257. DOI: 10.5051/jpis.2006080304.
  • Ye, X.; Wang, Z.; Ma, L.; Wang, Q.; Chu, A. Zinc Oxide Array/Polyurethane Nanocomposite Coating: Fabrication, Characterization and Corrosion Resistance. Surf. Coat. Technol. 2019, 358, 497–504. DOI: 10.1016/j.surfcoat.2018.11.080.
  • El Saeed, A. M.; Abd El-Fattah, M.; Azzam, A. M. Synthesis of ZnO Nanoparticles and Studying Its Influence on the Antimicrobial, Anticorrosion and Mechanical Behavior of Polyurethane Composite for Surface Coating. Dyes Pigm. 2015, 121, 282–289. DOI: 10.1016/j.dyepig.2015.05.037.
  • Ghashghaie, S.; Marzbanrad, E.; Raissi Dehkordi, B. Low‐Frequency Electrophoretic Deposition of ZnO Nanoparticles: Effect of Organic Medium on Deposition Pattern. J. Amer. Ceram. Soc. 2011, 94, 3431–3436. DOI: 10.1111/j.1551-2916.2011.04527.x.
  • Lebrette, S.; Pagnoux, C.; Abélard, P. Stability of Aqueous TiO2 Suspensions: Influence of Ethanol. J. Colloid Interface Sci. 2004, 280, 400–408. DOI: 10.1016/j.jcis.2004.07.033.
  • Ramesh, V.; Giera, B.; Karnes, J. J.; Stratmann, N.; Schaufler, V.; Li, Y.; Rehbock, C.; Barcikowski, S. Electrophoretic Deposition of Platinum Nanoparticles Using Ethanol-Water Mixtures Significantly Reduces Neural Electrode Impedance. J. Electrochem. Soc. 2022, 169, 022504. DOI: 10.1149/1945-7111/ac51f8.
  • Manzur, J.; Akhtar, M.; Aizaz, A.; Ahmad, K.; Yasir, M.; Minhas, B. Z.; Avcu, E.; Ur Rehman, M. A. Electrophoretic Deposition, Microstructure, and Selected Properties of Poly (Lactic-co-Glycolic) Acid-Based Antibacterial Coatings on Mg Substrate. ACS Omega. 2023, 8, 18074–18089. DOI: 10.1149/1945-7111/ac51f8.
  • Zhang, H. Thin-Film Hydration Followed by Extrusion Method for Liposome Preparation. Methods Mol. Biol. 2023, 2622, 57–63. DOI: 10.1007/978-1-0716-2954-3_4.
  • “Optimised Zeta Potential Measurement in Organic & Aqueous Media”. Testa Analytical Solutions. https://www.testa-analytical.com/news/news04.html#:∼:text=Typically%20making%20zeta%20potential%20measurements,analysis%20light%20scattering%20.
  • Dhiflaoui, H.; Khlifi, K.; Barhoumi, N.; Ben Cheikh Larbi, A. The Tribological and Corrosion Behavior of TiO2 Coatings Deposited by the Electrophoretic Deposition Process. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 234, 1231–1238. DOI: 10.1177/0954406219890373.
  • Vinila, V. S.; Isac, J. Synthesis and Structural Studies of Superconducting Perovskite GdBa2Ca3Cu4O10. 5+ δ Nanosystems. In Design, Fabrication, and Characterization of Multifunctional Nanomaterials. Elsevier: Amsterdam, Netherlands, 2022, pp. 319–341. DOI: 10.1016/B978-0-12-820558-7.00022-4.
  • Taha, A. H.; Chillab, R. K.; Jasim, K. A.; Shaban, A. H. 2022 Comparing Different Methods for Calculating Crystal Size, Strain and Crystallinity of LaBa2Cu3O7 Compound Using XRD Peak Broadening Analysis. In. AIP Conference Proceedings, Vol. 2437, No. 1. DOI: 10.1063/5.0093127.
  • Kozbial, A.; Li, Z.; Conaway, C.; McGinley, R.; Dhingra, S.; Vahdat, V.; Zhou, F.; D'Urso, B.; Liu, H.; Li, L. Study on the Surface Energy of Graphene by Contact Angle Measurements. Langmuir 2014, 30, 8598–8606. DOI: 10.1021/la5018328.
  • Spherical Particles in Colloidal suspensions. A Review of Formation Mechanisms by D.Q. Li et al., Journal of Colloid and Interface Science. 2015, Volume 437.
  • Nguyen, D. B.; Ha, V. P.; Vuong, V. D.; Chien, Y. H.; Le, T. V.; Chu, C. Y. Simulation and Verification of the Direct Current Electric Field on Fabricating High Porosity f-MWCNTs Thin Films by Electrophoretic Deposition Technique. Langmuir 2023, 39, 3883–3894. DOI: 10.1021/acs.langmuir.2c03116.
  • Bordbar-Khiabani, A.; Yarmand, B.; Mozafari, M. Enhanced Corrosion Resistance and in-Vitro Biodegradation of Plasma Electrolytic Oxidation Coatings Prepared on AZ91 Mg Alloy Using ZnO Nanoparticles-Incorporated Electrolyte. Surf. Coat. Technol. 2019, 360, 153–171. DOI: 10.1016/j.surfcoat.2019.01.002.
  • Shah, N. A.; Gul, M.; Abbas, M.; Amin, M. Synthesis of Metal Oxide Semiconductor Nanostructures for Gas Sensors. Gas Sensors 2019, 1, 101. DOI: 10.5772/intechopen.86815.
  • “Interpretation of the microstructure of steels”. University of Cambridge. Published by H. K. D. H. Bhadeshia. https://www.phase-trans.msm.cam.ac.uk/2008/Steel_Microstructure/SM.html#:∼:text=Austenite%20has%20a%20cubic%2Dclose,units%20of%20Fe3C.
  • Hobday, C. L.; Krause, S.; Rogge, S. M.; Evans, J. D.; Bunzen, H. Perspectives on the Influence of Crystal Size and Morphology on the Properties of Porous Framework Materials. Front. Chem. 2021, 9, 772059. DOI: 10.3389/fchem.2021.772059.
  • Ferreira, P.; Costa, M. E. D.; Silva, R. C. D.; Silva, F. S. Electrophoretic Deposition of ZnO Nanoparticles: Influence of Particle Concentration on Coating Growth and Photocatalytic Activity. J. Alloys Compd. 2021, 887, 161558.
  • Patra, P.; Mitra, S.; Debnath, N.; Pramanik, P.; Goswami, A. Ciprofloxacin Conjugated Zinc Oxide Nanoparticle: A Camouflage towards Multidrug Resistant Bacteria. Bull. Mater. Sci. 2014, 37, 199–206. DOI: 10.1007/s12034-014-0637-6.
  • Kayani, Z. N.; Iqbal, M.; Riaz, S.; Zia, R.; Naseem, S. Fabrication and Properties of Zinc Oxide Thin Film Prepared by Sol-Gel Dip Coating Method. Mater. Sci. Pol 2015, 33, 515–520. DOI: 10.1515/msp-2015-0085.
  • Salas, A.; Jaramillo, A. F.; Palacio, D. A.; Díaz-Gómez, A.; Rojas, D.; Medina, C.; Pérez-Tijerina, E.; Solís-Pomar, F.; Meléndrez, M. F. Hybrid Materials Based on Nanoparticles Functionalized with Alkylsilanes Covalently Anchored to Epoxy Matrices. Polymers (Basel) 2022, 14, 1579. DOI: 10.3390/polym14081579.
  • ASM Inc. https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mq316p.
  • Lv, H.; Zhang, Z.; Li, J.; Liu, Y.; Chen, H.; He, H.; Cheng, J.; Chen, Y. The Effect of Process-Induced Porosity on Fatigue Properties of Ti6Al4V Alloy via High-Power Direct Energy Deposition. Coatings 2022, 12, 822. DOI: 10.3390/coatings12060822.
  • Fischer-Cripps, A. C.; Fischer-Cripps, A. C. Nanoindentation Test Standards, Springer: New York, 2011, pp. 181–198. DOI: 10.1007/978-1-4419-9872-9_10.
  • Haarindraprasad, R.; Hashim, U.; Gopinath, S. C. B.; Kashif, M.; Veeradasan, P.; Balakrishnan, S. R.; Foo, K. L.; Poopalan, P. Low Temperature Annealed Zinc Oxide Nanostructured Thin Film-Based Transducers: Characterization for Sensing Applications. PLoS One. 2015, 10, e0132755. DOI: 10.1371/journal.pone.0132755.
  • Baranowska-Korczyc, A.; Kościński, M.; Coy, E. L.; Grześkowiak, B. F.; Jasiurkowska-Delaporte, M.; Peplińska, B.; Jurga, S. ZnS Coating for Enhanced Environmental Stability and Improved Properties of ZnO Thin Films. RSC Adv. 2018, 8, 24411–24421. DOI: 10.1039/C8RA02823K.
  • Raha, S.; Ahmaruzzaman, M. ZnO Nanostructured Materials and Their Potential Applications: Progress, Challenges and Perspectives. Nanoscale Adv. 2022, 4, 1868–1925. DOI: 10.1039/D1NA00880C.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.