34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Process modeling of direct Red-28 dye eradication by biopolymeric composite of polyaniline with mango leafy biowaste material

ORCID Icon, , , , , , & show all
Received 23 Nov 2023, Accepted 18 May 2024, Published online: 08 Jul 2024

References

  • Punnakkal, V. S.; Anila, E. Polypyrrole/Silver/Graphene Ternary Nanocomposite Synthesis and Study on Photocatalytic Property in Degrading Congo Red Dye under Visible Light. Surf. Interfaces 2023, 42, 103342. DOI: 10.1016/j.surfin.2023.103342.
  • Nidheesh, P.; Zhou, M.; Oturan, M. A. An Overview on the Removal of Synthetic Dyes from Water by Electrochemical Advanced Oxidation Processes. Chemosphere 2018, 197, 210–227. DOI: 10.1016/j.chemosphere.2017.12.195.
  • Nidheesh, P. V.; Gandhimathi, R.; Ramesh, S. T. Degradation of Dyes from Aqueous Solution by Fenton Processes: A Review. Environ. Sci. Pollut. Res. Int. 2013, 20, 2099–2132. DOI: 10.1007/s11356-012-1385-z.
  • Onat, T. A.; Gümüşdere, H. T.; Güvenç, A.; Dönmez, G.; Mehmetoğlu, Ü. Decolorization of Textile Azo Dyes by Ultrasonication and Microbial Removal. Desalination 2010, 255, 154–158. DOI: 10.1016/j.desal.2009.12.030.
  • Natarajan, S.; Bajaj, H. C.; Tayade, R. J. Recent Advances Based on the Synergetic Effect of Adsorption for Removal of Dyes from Waste Water Using Photocatalytic Process. J. Environ. Sci. (China) 2018, 65, 201–222. DOI: 10.1016/j.jes.2017.03.011.
  • Alakhras, F.; Alhajri, E.; Haounati, R.; Ouachtak, H.; Addi, A. A.; Saleh, T. A. A Comparative Study of Photocatalytic Degradation of Rhodamine B Using Natural-Based Zeolite Composites. Surf. Interfaces 2020, 20, 100611. DOI: 10.1016/j.surfin.2020.100611.
  • Banat, I. M.; Nigam, P.; Singh, D.; Marchant, R. Microbial Decolorization of Textile-Dyecontaining Effluents: A Review. Bioresour. Technol. 1996, 58, 217–227. DOI: 10.1016/S0960-8524(96)00113-7.
  • Crini, G. Non-Conventional Low-Cost Adsorbents for Dye Removal: A Review. Bioresour. Technol. 2006, 97, 1061–1085. DOI: 10.1016/j.biortech.2005.05.001.
  • Kausar, A.; Zohra, S. T.; Ijaz, S.; Iqbal, M.; Iqbal, J.; Bibi, I.; Nouren, S.; El Messaoudi, N.; Nazir, A. Cellulose-Based Materials and Their Adsorptive Removal Efficiency for Dyes: A Review. Int. J. Biol. Macromol. 2023, 224, 1337–1355. DOI: 10.1016/j.ijbiomac.2022.10.220.
  • Mennas, N.; Lahreche, S.; Chouli, F.; Sabantina, L.; Benyoucef, A. Adsorption of Methylene Blue Dye by Cetyltrimethylammonium Bromide Intercalated Polyaniline-Functionalized Montmorillonite Clay Nanocomposite: Kinetics, Isotherms, and Mechanism Study. Polymers. (Basel) 2023, 15, 3518. DOI: 10.3390/polym15173518.
  • Salleh, M. A. M.; Mahmoud, D. K.; Karim, W. A. W. A.; Idris, A. Cationic and Anionic Dye Adsorption by Agricultural Solid Wastes: A Comprehensive Review. Desalination 2011, 280, 1–13. DOI: 10.1016/j.desal.2011.07.019.
  • Bulgariu, L.; Escudero, L. B.; Bello, O. S.; Iqbal, M.; Nisar, J.; Adegoke, K. A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The Utilization of Leaf-Based Adsorbents for Dyes Removal: A Review. J. Mol. Liq. 2019, 276, 728–747. DOI: 10.1016/j.molliq.2018.12.001.
  • Bharathi, K.; Ramesh, S. Removal of Dyes Using Agricultural Waste as Low-Cost Adsorbents: A Review. Appl. Water Sci. 2013, 3, 773–790. DOI: 10.1007/s13201-013-0117-y.
  • Kharat, D. Preparing Agricultural Residue Based Adsorbents for Removal of Dyes from Effluents-a Review. Braz. J. Chem. Eng. 2015, 32, 1–12. DOI: 10.1590/0104-6632.20150321s00003020.
  • Anastopoulos, I.; Kyzas, G. Z. Agricultural Peels for Dye Adsorption: A Review of Recent Literature. J. Mol. Liq. 2014, 200, 381–389. DOI: 10.1016/j.molliq.2014.11.006.
  • Mo, J.; Yang, Q.; Zhang, N.; Zhang, W.; Zheng, Y.; Zhang, Z. A Review on Agro-Industrial Waste (AIW) Derived Adsorbents for Water and Wastewater Treatment. J. Environ. Manage. 2018, 227, 395–405. DOI: 10.1016/j.jenvman.2018.08.069.
  • Alshammari, M.; Al Juboury, M. F.; Naji, L. A.; Faisal, A. A.; Zhu, H.; Al-Ansari, N.; Naushad, M. Synthesis of a Novel Composite Sorbent Coated with Siderite Nanoparticles and Its Application for Remediation of Water Contaminated with Congo Red Dye. Int. J. Environ. Res. 2020, 14, 177–191. DOI: 10.1007/s41742-020-00245-6.
  • Rose, P. K.; Kumar, R.; Kumar, R.; Kumar, M.; Sharma, P. Congo Red Dye Adsorption onto Cationic Amino-Modified Walnut Shell: Characterization, RSM Optimization, Isotherms, Kinetics, and Mechanism Studies. Groundwater Sustain. Dev. 2023, 21, 100931. DOI: 10.1016/j.gsd.2023.100931.
  • Raval, N. P.; Shah, P. U.; Shah, N. K. Adsorptive Amputation of Hazardous Azo Dye Congo Red from Wastewater: A Critical Review. Environ. Sci. Pollut. Res. Int. 2016, 23, 14810–14853. DOI: 10.1007/s11356-016-6970-0.
  • Ren, K.; Fan, Y.; Xing, G.; Zhai, M.; Sheng, J.; Song, Y. Rapid and Convenient Synthesis of “Green” Ammonium-Modified Chitosan Composite Sponge with the Existence of Ascorbic Acid for Highly Efficient Removal of Congo Red (CR). Carbohydr. Polym. 2024, 324, 121444. DOI: 10.1016/j.carbpol.2023.121444.
  • Zhao, Y.; Yuan, N.; Bian, D.; Sun, J.; Qian, G. Preparation of a Novel CSM@ ZIF-67 Composite Microsphere to Facilitate Congo Red Adsorption from Dyeing Wastewater. Environ. Technol. 2023, 45, 2255–2267. DOI: 10.1080/09593330.2023.2169640.
  • Vinayagam, R.; Kandati, S.; Murugesan, G.; Goveas, L. C.; Baliga, A.; Pai, S.; Varadavenkatesan, T.; Kaviyarasu, K.; Selvaraj, R. Bioinspiration Synthesis of Hydroxyapatite Nanoparticles Using Eggshells as a Calcium Source: Evaluation of Congo Red Dye Adsorption Potential. J. Mater. Res. Technol. 2023, 22, 169–180. DOI: 10.1016/j.jmrt.2022.11.093.
  • Shoaib, A. G.; El Nemr, A.; Ramadan, M. S.; Masoud, M. S.; El Sikaily, A. Composite Fabrication and Characterization of Crosslinked Polyaniline/Pterocladia Capillacea-Activated Carbon for Adsorption of Direct Blue-86 Dye from Water. Polym. Bull. 2023, 80, 10393–10428. DOI: 10.1007/s00289-022-04563-x.
  • Rady, D.; Shaban, M.; Elsayed, K. N. M.; Hamd, A.; Soliman, N. K.; Abd El-Mageed, H. R.; Elzanaty, A. M.; El-Sayed, R.; Morad, M.; El-Bahy, S. M.; Ahmed, S. A. Experimentally and Theoretically Approaches for Congo Red Dye Adsorption on Novel Kaolinite-Alga Nano-Composite. Int. J. Environ. Anal. Chem. 2023, 103, 7229–7251. DOI: 10.1080/03067319.2021.1969378.
  • Mokeddem, A.; Benykhlef, S.; Bendaoudi, A. A.; Boudouaia, N.; Mahmoudi, H.; Bengharez, Z.; Topel, S. D.; Topel, Ö. Sodium Alginate-Based Composite Films for Effective Removal of Congo Red and Coralene Dark Red 2B Dyes: Kinetic, Isotherm and Thermodynamic Analysis. Water 2023, 15, 1709. DOI: 10.3390/w15091709.
  • Mahmud, N.; Benamor, A. Magnetic Iron Oxide Kaolinite Nanocomposite for Effective Removal of Congo Red Dye: Adsorption, Kinetics, and Thermodynamics Studies. Water Conserv. Sci. Eng. 2023, 8, 35. DOI: 10.1007/s41101-023-00207-x.
  • Faizan, S.; Zaid, F.; Bakhtawara. Detection and Removal of Congo Red via Aniline-Based Polymer and Polymer Composite. Polym. Bull. 2023, 80, 7971–7989. DOI: 10.1007/s00289-022-04432-7.
  • Extross, A.; Waknis, A.; Tagad, C.; Gedam, V.; Pathak, P. Adsorption of Congo Red Using Carbon from Leaves and Stem of Water Hyacinth: Equilibrium, Kinetics, Thermodynamic Studies. Int. J. Environ. Sci. Technol. 2023, 20, 1607–1644. DOI: 10.1007/s13762-022-03938-x.
  • Das, D.; Das, J.; Deb, K.; Chakraborty, S.; Saha, B. A Low-Cost Flexible Material System Made of PANI/Graphite for Resistive Detection and Quantitative Determination of Urea. Mater. Chem. Phys. 2023, 301, 127573. DOI: 10.1016/j.matchemphys.2023.127573.
  • Brini, L.; H’Maida, K.; Imgharn, A.; Hsini, A.; Naciri, Y.; Ajmal, Z.; Bouziani, A.; Boulahya, A.; Arahou, M.; Bakiz, B.; et al. Synthesis and Characterisation of PANI-Coated Heliotrope Leaves (PANI@ HL) with High Clean-up Capacity for Orange G Dye from Aqueous Media. Int. J. Environ. Anal. Chem. 2023, 103, 8641–8657. DOI: 10.1080/03067319.2021.1994557.
  • Al-Odayni, A.-B.; Alsubaie, F. S.; Saeed, W. S. Nitrogen-Rich Polyaniline-Based Activated Carbon for Water Treatment: Adsorption Kinetics of Anionic Dye Methyl Orange. Polymers. (Basel) 2023, 15, 806. DOI: 10.3390/polym15040806.
  • Ahmad, N.; Bano, D.; Jabeen, S.; Ahmad, N.; Iqbal, A.; Anwer, A. H., Jeong, C. Insight into the Adsorption Thermodynamics, Kinetics, and Photocatalytic Studies of Polyaniline/SnS2 Nanocomposite for Dye Removal. J. Hazard. Mater. Adv. 2023, 10, 100321. DOI: 10.1016/j.hazadv.2023.100321.
  • Gorza, F. D.; Pedro, G. C.; da Silva, R. J.; Medina-Llamas, J. C.; Alcaraz-Espinoza, J. J.; Chavez-Guajardo, A. E.; de Melo, C. P. Electrospun Polystyrene-(Emeraldine Base) Mats as High-Performance Materials for Dye Removal from Aqueous Media. J. Taiwan Inst. Chem. Eng. 2018, 82, 300–311. DOI: 10.1016/j.jtice.2017.10.034.
  • Wang, H.; MacDiarmid, A.; Wang, Y.; Gebier, D.; Epstein, A. J. Application of Polyaniline (Emeraldine Base, EB) in Polymer Light-Emitting Devices. Synth. Met. 1996, 78, 33–37. DOI: 10.1016/0379-6779(95)03569-6.
  • Karyakin, A.; Lukachova, L.; Karyakina, E.; Orlov, A.; Karpachova, G. The Improved Potentiometric pH Response of Electrodes Modified with Processible Polyaniline. Application to Glucose Biosensor. Anal. Commun. 1999, 36, 153–156. DOI: 10.1039/a900597h.
  • Li, Q.; Wu, J.; Tang, Q.; Lan, Z.; Li, P.; Lin, J.; Fan, L. Application of Microporous Polyaniline Counter Electrode for Dye-Sensitized Solar Cells. Electrochem. Commun. 2008, 10, 1299–1302. DOI: 10.1016/j.elecom.2008.06.029.
  • Li, Z.-F.; Zhang, H.; Liu, Q.; Sun, L.; Stanciu, L.; Xie, J. Fabrication of High-Surface-Area Graphene/Polyaniline Nanocomposites and Their Application in Supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 2685–2691. DOI: 10.1021/am4001634.
  • Tahir, Z. M.; Alocilja, E. C.; Grooms, D. L. Polyaniline Synthesis and Its Biosensor Application. Biosens. Bioelectron. 2005, 20, 1690–1695. DOI: 10.1016/j.bios.2004.08.008.
  • Li, C.; Xu, J.; Xu, Q.; Xue, G.; Yu, H.; Wang, X.; Lu, J.; Cui, G.; Gu, G. Synthesis of Ti3C2 MXene@ PANI Composites for Excellent Anticorrosion Performance of Waterborne Epoxy Coating. Prog. Org. Coat. 2022, 165, 106673. DOI: 10.1016/j.porgcoat.2021.106673.
  • Debnath, A.; Das, J.; Deb, K.; Bhowmik, K. L.; Saha, B. Camphor Sulfonic Acid Incorporation in SnO 2/Polyaniline Nanocomposites for Improved Thermoelectric Energy Conversion. Sustain. Energy Fuels 2022, 6, 1332–1344. DOI: 10.1039/D1SE01909K.
  • MacDiarmid, A.; Yang, L.; Huang, W.; Humphrey, B. Polyaniline: Electrochemistry and Application to Rechargeable Batteries. Synth. Met. 1987, 18, 393–398. DOI: 10.1016/0379-6779(87)90911-8.
  • Nasar, A. Polyaniline (PANI) Based Composites for the Adsorptive Treatment of Polluted Water. Smart Polym. Compos. 2018, 21, 40.
  • Das, D.; Das, J.; Debnath, A.; Chakraborty, S.; Saha, B. Positive Temperature Coefficient of Resistance in Na2S Interacted Polyaniline on Cellulose Substrate: A Flexible Electronic Material. Synth. Met. 2022, 287, 117089. DOI: 10.1016/j.synthmet.2022.117089.
  • Shabandokht, M.; Binaeian, E.; Tayebi, H.-A. Adsorption of Food Dye Acid Red 18 onto Polyaniline-Modified Rice Husk Composite: Isotherm and Kinetic Analysis. Desalin. Water Treat. 2016, 57, 1–13. DOI: 10.1080/19443994.2016.1172982.
  • Imgharn, A.; Aarab, N.; Hsini, A.; Naciri, Y.; Elhoudi, M.; Haki, M. A.; Laabd, M.; Lakhmiri, R.; Albourine, A. Application of Calcium alginate-PANI@ Sawdust Wood Hydrogel Bio-Beads for the Removal of Orange G Dye from Aqueous Solution. Environ. Sci. Pollut. Res. 2022, 1–10.
  • Toumi, I.; Djelad, H.; Chouli, F.; Benyoucef, A. Synthesis of PANI@ ZnO Hybrid Material and Evaluations in Adsorption of Congo Red and Methylene Blue Dyes: Structural Characterization and Adsorption Performance. J. Inorg. Organomet. Polym. 2022, 32, 112–121. DOI: 10.1007/s10904-021-02084-0.
  • Alardhi, S. M.; Abdalsalm, A. H.; Ati, A. A.; Abdulkareem, M. H.; Ramadhan, A. A.; Taki, M. M.; Abbas, Z. Y. Comparative Kinetic and Isotherm Studies of Methyl Orange Dye Adsorption Using ZnO/PANi Composite Materials. 2022.
  • Saha, B.; Debnath, A.; Saha, B. Fabrication of PANI@ Fe–Mn–Zr Hybrid Material and Assessments in Sono-Assisted Adsorption of Methyl Red Dye: Uptake Performance and Response Surface Optimization. J. Indian Chem. Soc. 2022, 99, 100635. DOI: 10.1016/j.jics.2022.100635.
  • Das, P.; Debnath, A. Reactive Orange 12 Dye Adsorption onto Magnetically Separable CaFe2O4 Nanoparticles Synthesized by Simple Chemical Route: Kinetic, Isotherm and Neural Network Modeling. Water Pract. Technol. 2021, 16, 1141–1158. DOI: 10.2166/wpt.2021.064.
  • Deb, A.; Debnath, A.; Saha, B. Sono-Assisted Enhanced Adsorption of Eriochrome Black-T Dye onto a Novel Polymeric Nanocomposite: Kinetic, Isotherm, and Response Surface Methodology Optimization. J. Dispersion Sci. Technol. 2021, 42, 1579–1592. DOI: 10.1080/01932691.2020.1775093.
  • Sarkar, K.; Deb, K.; Bera, A.; Debnath, A.; Saha, B. Tuning of Optical and Electrical Properties of Polyaniline on Flexible Cellulose through Eosin Y Dye Interaction. Mater. Res. Express 2019, 6, 075317. DOI: 10.1088/2053-1591/ab12a4.
  • Tanweer, M. S.; Iqbal, Z.; Alam, M. Experimental Insights into Mesoporous Polyaniline-Based Nanocomposites for Anionic and Cationic Dye Removal. Langmuir 2022, 38, 8837–8853. DOI: 10.1021/acs.langmuir.2c00889.
  • Nasar, A.; Mashkoor, F. Application of Polyaniline-Based Adsorbents for Dye Removal from Water and Wastewater: A Review. Environ. Sci. Pollut. Res. Int. 2019, 26, 5333–5356. DOI: 10.1007/s11356-018-3990-y.
  • Janaki, V.; Oh, B.-T.; Shanthi, K.; Lee, K.-J.; Ramasamy, A.; Kamala-Kannan, S. Polyaniline/Chitosan Composite: An Eco-Friendly Polymer for Enhanced Removal of Dyes from Aqueous Solution. Synth. Met. 2012, 162, 974–980. DOI: 10.1016/j.synthmet.2012.04.015.
  • Anirudhan, T.; Suchithra, P. S.; Radhakrishnan, P. Synthesis and Characterization of Humic Acid Immobilized-Polymer/Bentonite Composites and Their Ability to Adsorb Basic Dyes from Aqueous Solutions. Appl. Clay Sci. 2009, 43, 336–342. DOI: 10.1016/j.clay.2008.09.015.
  • Mashkoor, F.; Nasar, A. Polyaniline/Tectona Grandis Sawdust: A Novel Composite for Efficient Decontamination of Synthetically Polluted Water Containing Crystal Violet Dye. Groundwater Sustain. Dev. 2019, 8, 390–401. DOI: 10.1016/j.gsd.2018.12.008.
  • Hsini, A.; Essekri, A.; Aarab, N.; Laabd, M.; Ait Addi, A.; Lakhmiri, R.; Albourine, A. Elaboration of Novel Polyaniline@Almond Shell Biocomposite for Effective Removal of Hexavalent Chromium Ions and Orange G Dye from Aqueous Solutions. Environ. Sci. Pollut. Res. Int. 2020, 27, 15245–15258. DOI: 10.1007/s11356-020-08039-1.
  • Noreen, S.; Bhatti, H. N.; Iqbal, M.; Hussain, F.; Sarim, F. M. Chitosan, Starch, Polyaniline and Polypyrrole Biocomposite with Sugarcane Bagasse for the Efficient Removal of Acid Black Dye. Int. J. Biol. Macromol. 2020, 147, 439–452. DOI: 10.1016/j.ijbiomac.2019.12.257.
  • Maruthapandi, M.; Eswaran, L.; Luong, J. H.; Gedanken, A. Sonochemical Preparation of Polyaniline@ TiO2 and Polyaniline@ SiO2 for the Removal of Anionic and Cationic Dyes. Ultrason. Sonochem. 2020, 62, 104864. DOI: 10.1016/j.ultsonch.2019.104864.
  • Karthikaikumar, S.; Karthikeyan, M.; Kumar, K. S. Removal of Congo Red Dye from Aqueous Solution by Polyaniline–Montmorrillonite Composite. Chem. Sci. Rev. Lett. 2014, 2, 606–614.
  • El-Sharkaway, E.; Kamel, R. M.; El-Sherbiny, I. M.; Gharib, S. S. Removal of Methylene Blue from Aqueous Solutions Using Polyaniline/Graphene Oxide or Polyaniline/Reduced Graphene Oxide Composites. Environ. Technol. 2019, 41, 2854–2862. DOI: 10.1080/09593330.2019.1585481.
  • Kanwal, F.; Rehman, R.; Bakhsh, I. Q. Batch Wise Sorptive Amputation of Diamond Green Dye from Aqueous Medium by Novel Polyaniline-Alstonia Scholaris Leaves Composite in Ecofriendly Way. J. Cleaner Prod. 2018, 196, 350–357. DOI: 10.1016/j.jclepro.2018.06.056.
  • Kanwal, F.; Rehman, R.; Warraich, H. Synthesis of Novel Polyaniline Composites with Eriobotrya Japonica Leaves for Removal of Methyl Red Dye from Wastewater. Bulg. Chem. Commun. 2019, 51, 586–591.
  • Prol, A.; Azzem, M.; Amer, A.; El-Metwally, M.; El-Hamid, H.; El–Moselhy, K. Adsorption of Cadmium (II) Ions from Aqueous Solution onto Mango Leaves. AJOPACS. 2017, 2, 1–11. DOI: 10.9734/AJOPACS/2017/34356.
  • Ong, P. S. Utilization of Mango Leaf as Low-Cost Adsorbent for the Removal of Cu (II) Ion from Aqueous Solution; UTAR, 2011.
  • Iqbal, M.; Saeed, A.; Zafar, S. I. FTIR Spectrophotometry, Kinetics and Adsorption Isotherms Modeling, Ion Exchange, and EDX Analysis for Understanding the Mechanism of Cd2+ and Pb2+ Removal by Mango Peel Waste. J. Hazard. Mater. 2009, 164, 161–171. DOI: 10.1016/j.jhazmat.2008.07.141.
  • Saha, R.; Saha, B. Removal of Hexavalent Chromium from Contaminated Water by Adsorption Using Mango Leaves (Mangifera indica). Desalin. Water Treat. 2014, 52, 1928–1936. DOI: 10.1080/19443994.2013.804458.
  • Sharma, S.; Imran, A. Adsorption of Rhodamine B Dye from Aqueous Solution onto Acid Activated Mango (Magnifera Indica) Leaf Powder: Equilibrium, Kinetic and Thermodynamic Studies. J. Toxicol. Environ. Health Sci. 2011, 3, 286–297.
  • Bello, O. S.; Bello, O. U.; Lateef, I. O. Adsorption Characteristics of Mango Leaf (Mangifera indica) Powder as Adsorbent for Malachite Green Dye Removal from Aqueous Solution. Covenant J. Phys. Life Sci. 2014, 2.
  • Vyavahare, G.; Jadhav, P.; Jadhav, J.; Patil, R.; Aware, C.; Patil, D.; Gophane, A.; Yang, Y.-H.; Gurav, R. Strategies for Crystal Violet Dye Sorption on Biochar Derived from Mango Leaves and Evaluation of Residual Dye Toxicity. J. Cleaner Prod. 2019, 207, 296–305. DOI: 10.1016/j.jclepro.2018.09.193.
  • Gunasekar, V.; Ramadoss, G.; Ponnusami, V. Influence of Process Variables on Adsorption of Congo Red onto Mango Leaf Char Using Factorial Design Analysis. Environ. Eng. Manage. J. (EEMJ) 2017, 16.
  • Yasuda, A.; Shimidzu, T. Chemical Oxidative Polymerization of Aniline with Ferric Chloride. Polym. J. 1993, 25, 329–338. DOI: 10.1295/polymj.25.329.
  • Kanwal, F.; Batool, A.; Rasool, S.; Naseem, S.; Rehman, R. Synthesis of Polyaniline Composites with Grinded Leaves of Polyalthia Longifolia, Syzygium Cumini, Alstonia Scholaris and Madhuca Longifolia and Study of Their Structural, Electrical and Dielectric Properties. Asian J. Chem. 2014, 26, 7519–7522. DOI: 10.14233/ajchem.2014.16649.
  • Kanwal, F.; Imran, M.; Mitu, L.; Rashid, Z.; Razzaq, H. Removal of Chromium (III) Using Synthetic Polymers, Copolymers and Their Sulfonated Derivatives as Adsorbents. J. Chem. 2012, 9, 621–630. DOI: 10.1155/2012/857579.
  • Kanwal, F.; Rehman, R.; Anwar, J.; Saeed, M. Batchwise Removal of Chromium (VI) by Adsorption on Novel Synthesized Polyaniline Composites with Various Brans and Isothermal Modeling of Equilibrium Data. J. Chem. Soc. Pak. 2012, 34, 1134.
  • Kanwal, F.; Rehman, R.; Anwar, J.; Saeed, M. Removal of Lead (II) from Water by Adsorption on Novel Composites of Polyaniline with Maize Bran, Wheat Bran and Rice Bran. Asian J. Chem. 2013, 25, 2399–2404. DOI: 10.14233/ajchem.2013.13333.
  • Sayğılı, G. A. Synthesis, Characterization and Adsorption Properties of a Novel Biomagnetic Composite for the Removal of Congo Red from Aqueous Medium. J. Mol. Liq. 2015, 211, 515–526. DOI: 10.1016/j.molliq.2015.07.048.
  • Teymur, Y. A.; Güzel, F.; Koyuncu, F.; Sayğılı, G. A. Use of a Novel Bio-Magnetic Nanocomposite Synthesized from Industrial Tomato Processing Waste for Methylene Blue Removal: Sorption Optimization, Kinetic and Isotherm Studies. Cellulose 2020, 27, 9577–9591. DOI: 10.1007/s10570-020-03442-w.
  • Kanwal, F.; Siddiqi, S. A.; Tasleem, S. Synthesis and Characterization of Poly Aniline/Wood and Poly Aniline/Carbon Composites. J. Chem. Soc. Pak. 2009, 31, 882–887.
  • Alakhras, F. Spectroelectrochemical Investigations of Electrochemically Synthesized Selenophene-Thianaphthene Copolymers. Electroanal. Chem. 2017, 786, 63–68. DOI: 10.1016/j.jelechem.2017.01.014.
  • Osorio-Fuente, J. E.; Gómez-Yáñez, C.; Hernández-Pérez, M.; Corea-Téllez, M. Submicrometric Fibrillar Structures of Codoped Polyaniline Obtained by co-Oxidation Using the NaClO/Ammonium Peroxydisulfate System: Synthesis and Characterization. J. Mex. Chem. Soc. 2017, 57, 306–313. DOI: 10.29356/jmcs.v57i4.194.
  • Dumitrescu, I.; Nicolae, C.-A.; Mocioiu, A. M.; Gabor, R. A.; Grigorescu, M.; Mihailescu, M. Synthesis and Characterization of Conductive Polymers with Enhanced Solubility. UPB Sci. Bull. Series A 2009, 71, 63–72.
  • Rehman, R.; Hussain, M. S.; Samin, G.; Jahangir, M. M.; Dar, A.; Al-Thagafi, Z. T.; Alsantali, R. I.; Al-Abbad, E. A.; Akram, M. Effective Application of Citric Acid Treated Trapa natans and Citrullus lanatus Lignocellulosic Macromolecules for Adsorptive Remediation of Acid Violet-7 Dye. Int. J. Biol. Macromol. 2024, 256, 128285. DOI: 10.1016/j.ijbiomac.2023.128285.
  • Jhaumeer Laulloo, S.; Bhowon, M. G.; Soyfoo, S.; Chua, L. S. Nutritional and Biological Evaluation of Leaves of Mangifera indica from Mauritius. J. Chem. 2018, 2018, 1–9. DOI: 10.1155/2018/6869294.
  • Abukhadra, M. R.; Rabia, M.; Shaban, M.; Verpoort, F. Heulandite/Polyaniline Hybrid Composite for Efficient Removal of Acidic Dye from Water. Kinetic, Equilibrium Studies and Statistical Optimization. Adv. Powder Technol. 2018, 29, 2501–2511. DOI: 10.1016/j.apt.2018.06.030.
  • Mahanta, D.; Madras, G.; Radhakrishnan, S.; Patil, S. Adsorption of Sulfonated Dyes by Polyaniline Emeraldine Salt and Its Kinetics. J. Phys. Chem. B 2008, 112, 10153–10157. DOI: 10.1021/jp803903x.
  • Janaki, V.; Vijayaraghavan, K.; Oh, B.-T.; Lee, K.-J.; Muthuchelian, K.; Ramasamy, A.; Kamala-Kannan, S. Starch/Polyaniline Nanocomposite for Enhanced Removal of Reactive Dyes from Synthetic Effluent. Carbohydr. Polym. 2012, 90, 1437–1444. DOI: 10.1016/j.carbpol.2012.07.012.
  • Iqbal, M.; Zafar, S.; Khan, M. I.; Shahida, S.; Ur Rehman, H.; Iqbal, M.; Shanableh, A.; Javed, T. Utilization of Mangifera indica. Leaves Powder as a Cost-Effective Adsorbent for the Removal of Eosin Yellow from Wastewater.
  • Pathania, D.; Sharma, G.; Kumar, A.; Naushad, M.; Kalia, S.; Sharma, A.; ALOthman, Z. A. Combined Sorptional–Photocatalytic Remediation of Dyes by Polyaniline Zr (IV) Selenotungstophosphate Nanocomposite. Toxicol. Environ. Chem. 2015, 97, 526–537. DOI: 10.1080/02772248.2015.1050024.
  • Rehman, R. Adsorption Studies of Cadmium (II) Using Novel Composites of Polyaniline with Rice Husk and Saw Dust of Eucalyptus Camaldulensis. Electron. J. Environ. Agric. Food Chem. (EJEAFChe) 2011, 10, 2972–2985.
  • Vimonses, V.; Lei, S.; Jin, B.; Chow, C. W.; Saint, C. Kinetic Study and Equilibrium Isotherm Analysis of Congo Red Adsorption by Clay Materials. Chem. Eng. J. 2009, 148, 354–364. DOI: 10.1016/j.cej.2008.09.009.
  • Ai, L.; Zhang, C.; Liao, F.; Wang, Y.; Li, M.; Meng, L.; Jiang, J. Removal of Methylene Blue from Aqueous Solution with Magnetite Loaded Multi-Wall Carbon Nanotube: Kinetic, Isotherm and Mechanism Analysis. J. Hazard. Mater. 2011, 198, 282–290. DOI: 10.1016/j.jhazmat.2011.10.041.
  • Foo, K. Y.; Hameed, B. H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10. DOI: 10.1016/j.cej.2009.09.013.
  • Rehman, R.; Manzoor, I.; Mitu, L. Isothermal Study of Congo Red Dye Biosorptive Removal from Water by Solanum tuberosum and Pisum sativum Peels in Economical Way. Bull. Chem. Soc. Eth. 2018, 32, 213–223. DOI: 10.4314/bcse.v32i2.3.
  • Abbas, A.; Rehman, R.; Murtaza, S.; Shafique, U.; Zahid, A.; Ayub, R. Adsorptive Removal of Congo Red and Sunset Yellow Dyes from Water Systems by Lady Finger Stem. J. Chem. Soc. Pak. 2012, 34.
  • Sharma, A.; Sharma, G.; Naushad, M.; Ghfar, A. A.; Pathania, D. Remediation of Anionic Dye from Aqueous System Using Bio-Adsorbent Prepared by Microwave Activation. Environ. Technol. 2018, 39, 917–930. DOI: 10.1080/09593330.2017.1317293.
  • Ahmed, D. N.; Naji, L. A.; Faisal, A. A.; Al-Ansari, N.; Naushad, M. Waste Foundry Sand/MgFe-Layered Double Hydroxides Composite Material for Efficient Removal of Congo Red Dye from Aqueous Solution. Sci. Rep. 2020, 10, 2042. DOI: 10.1038/s41598-020-58866-y.
  • Singh, S.; Perween, S.; Ranjan, A. Dramatic Enhancement in Adsorption of Congo Red Dye in Polymer-Nanoparticle Composite of Polyaniline-Zinc Titanate. J. Environ. Chem. Eng. 2021, 9, 105149. DOI: 10.1016/j.jece.2021.105149.
  • Laabd, M.; Ahsaine, H. A.; El Jaouhari, A.; Bakiz, B.; Bazzaoui, M.; Ezahri, M.; Albourine, A.; Benlhachemi, A. Congo Red Removal by PANi/Bi2WO6 Nanocomposites: Kinetic, Equilibrium and Thermodynamic Studies. J. Environ. Chem. Eng. 2016, 4, 3096–3105. DOI: 10.1016/j.jece.2016.06.024.
  • Saha, B.; Debnath, A.; Saha, B. Evaluation of Fe–Mn–Zr Trimetal Oxide/Polyaniline Nanocomposite as Potential Adsorbent for Abatement of Toxic Dye from Aqueous Solution. In Polymer Technology in Dye-Containing Wastewater; Springer: Berlin, 2022; Vol. 1. p 15–37.
  • Bhaumik, M.; McCrindle, R. I.; Maity, A. Enhanced Adsorptive Degradation of Congo Red in Aqueous Solutions Using Polyaniline/Fe0 Composite Nanofibers. Chem. Eng. J. 2015, 260, 716–729. DOI: 10.1016/j.cej.2014.09.014.
  • Daneshvar, E.; Vazirzadeh, A.; Niazi, A.; Kousha, M.; Naushad, M.; Bhatnagar, A. Desorption of Methylene Blue Dye from Brown Macroalga: Effects of Operating Parameters, Isotherm Study and Kinetic Modeling. J. Cleaner Prod. 2017, 152, 443–453. DOI: 10.1016/j.jclepro.2017.03.119.
  • Hou, H.; Zhou, R.; Wu, P.; Wu, L. Removal of Congo Red Dye from Aqueous Solution with Hydroxyapatite/Chitosan Composite. Chem. Eng. J. 2012, 211-212, 336–342. DOI: 10.1016/j.cej.2012.09.100.
  • Ozola-Davidane, R.; Burlakovs, J.; Tamm, T.; Zeltkalne, S.; Krauklis, A. E.; Klavins, M. Bentonite-Ionic Liquid Composites for Congo Red Removal from Aqueous Solutions. J. Mol. Liq. 2021, 337, 116373. DOI: 10.1016/j.molliq.2021.116373.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.