Publication Cover
Cybernetics and Systems
An International Journal
Volume 55, 2024 - Issue 2
57
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A Novel Intelligent Ground Moving Target Indication Using Meta-Heuristic-Based Simplified Fractional Fourier Transform

&

References

  • Almeida, L. B. 1994. The fractional Fourier transform and time-frequency representations. IEEE Transactions on Signal Processing 42 (11):3084–91. doi: 10.1109/78.330368.
  • Bergin, J. S, and P. M. Techau. 2006. Multiresolution signal processing techniques for ground moving target detection using airborne radar. EURASIP Journal on Advances in Signal Processing 2006 (1):1–16. doi: 10.1155/ASP/2006/47534.
  • Budillon, A., V. Pascazio, and G. Schirinzi. 2008. Estimation of radial velocity of moving targets by along-track interferometric SAR systems. IEEE Geoscience and Remote Sensing Letters 5 (3):349–53. doi: 10.1109/LGRS.2008.915937.
  • Chiu, S. 2003. Clutter effects on ground moving target velocity estimation with SAR along-track interferometry. In Proceedings of International IEEE Geoscience and Remote Sensing Symposium, Toulouse, France, 1314–9.
  • Chiu, S, and M. V. Dragosevic. 2009. Moving target indication via RADARSAT-2 multichannel synthetic aperture. EURASIP Journal on Advances in Signal Processing 2010 (1):1–19. doi: 10.1155/2010/740130.
  • de Moraes, R. S, and E. P. de Freitas. 2019. Experimental analysis of heuristic solutions for the moving target traveling salesman problem applied to a moving targets monitoring system. Expert Systems with Applications 136:392–409 doi: 10.1016/j.eswa.2019.04.023.
  • Dong, Z., B. Cai, and D. N. Liang. 2010. Detection of ground moving targets for two-channel spaceborne SAR-ATI. EURASIP Journal on Advances in Signal Processing 2010 (1):230785. doi: 10.1155/2010/230785.
  • Durak, A, and C. H. Gierull. 2005. Clutter effects on the interferometric phase of ground moving targets. DRDC Ottawa Research Report TM 2005-175 Defense R&D Canada-Ottawa.
  • Faris, H., I. Aljarah, M. Mafarja, and A. A. Heidari. 2020. Salp Swarm Algorithm: Theory, literature review, and application in extreme learning machines. In Studies in Computational Intelligence, Hindawi, 185–99. Springer Link.
  • Fienup, J. R. 2001. Detecting moving targets in SAR imagery by focusing. IEEE Transactions on Aerospace and Electronic Systems 37 (3):794–809. doi: 10.1109/7.953237.
  • Freeman, A, and A. Currie. 1987. Synthetic aperture radar (SAR) images of moving targets. The GEC Journal of Research 5 (2):106–15.
  • Guo, B., D. Vu, L. Xu, M. Xue, and J. Li. 2011. GMTI via multichannel airborne SAR. IEEE Transactions on Geoscience and Remote Sensing 49 (10):3753–64. doi: 10.1109/TGRS.2011.2143420.
  • Heidari, A. A., S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen. 2019. Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems 97:849–72. doi: 10.1016/j.future.2019.02.028.
  • Jagadeeshwar, T. L., S. Kalyani, P. Rajagopal, and B. Srinivasan. 2022. Statistics-based baseline-free approach for rapid inspection of delamination in composite structures using ultrasonic guided waves. Structural Health Monitoring :147592172110733. doi: 10.1177/14759217211073335.
  • Jao, J. K. 2001. Theory of synthetic aperture radar imaging of a moving target. IEEE Transactions on Geoscience and Remote Sensing. 39 (9):1984–92.
  • Kumar, M. B, and P. R. Kumar. 2020. Bayesian fusion strategy for moving target detection in multichannel SAR framework. Evolutionary Intelligence 15:1411–24.
  • Li, Q., L. He, L. Qi, and R. Wang. 2017. Unique decomposition and a new model for the GMTI problem. Journal of Optimization Theory and Applications 173 (1):297–312. doi: 10.1007/s10957-016-1052-5.
  • Liu, S., Y. Ma, and Y. Huang. 2019. Sea clutter cancellation for passive radar sensor exploiting multi-channel adaptive filters. IEEE Sensors Journal 19 (3):982–95. doi: 10.1109/JSEN.2018.2879879.
  • Liu, S., H. Zhang, T. Shan, and Y. Huang. 2021. Efficient radar detection of weak maneuvering targets using a coarse-to-fine strategy. IET Radar, Sonar & Navigation 15 (2):181–93. doi: 10.1049/rsn2.12028.
  • Li, G., X. G. Xia, and Y. N. Peng. 2008. Doppler keystone transform: An approach suitable for parallel implementation of SAR moving target imaging. IEEE Geoscience and Remote Sensing Letters 5 (4):573–7. doi: 10.1109/LGRS.2008.2000621.
  • Li, X., M. Xing, X. Xia, G. Sun, Y. Liang, and Z. Bao. 2016. Simultaneous stationary scene imaging and GMTI for high-resolution wide-swath SAR system. IEEE Transactions on Geoscience and Remote Sensing 54 (7):4224–39. doi: 10.1109/TGRS.2016.2538564.
  • Li, G., J. Xu, Y. N. Peng, and X.-G. Xia. 2007. Location and imaging of moving targets using nonuniform linear antenna array SAR. IEEE Transactions on Aerospace and Electronic Systems. 43 (3):1214–20.
  • Li, Q., H. Yan, L. Wu, and R. Wang. 2013. Robust PCA for GMTI in wide-area surveillance radar system. Journal of the Operations Research Society of China 1 (1):135–53. doi: 10.1007/s40305-013-0006-y.
  • Lv, G., J. Wang, and X. Liu. 2013. GMTI in SAR images by symmetric defocusing. IEEE Geoscience and Remote Sensing Letters. 10 (2):241–5.
  • Mirjalili, S., S. M. Mirjalili, and A. Lewis. 2014. Grey wolf optimizer. Advances in Engineering Software 69:46–61. doi: 10.1016/j.advengsoft.2013.12.007.
  • Neo, Y. L., F. H. Wong, and I. G. Cumming. 2008. Processing of azimuth-invariant bistatic SAR data using the range Doppler algorithm. IEEE Transactions on Geoscience and Remote Sensing 46 (1):14–21. doi: 10.1109/TGRS.2007.909090.
  • Ozaktas, H. M., O. Arikan, M. A. Kutay, and G. Bozdagt. 1996. Digital computation of the fractional Fourier transform. IEEE Transactions on Signal Processing 44 (9):2141–50. doi: 10.1109/78.536672.
  • Page, D, and G. Owirka. 2006. Knowledge-aided STAP processing for GMTI radar using multilook data. EURASIP Journal on Advances in Signal Processing 2006 (1):1–16. doi: 10.1155/ASP/2006/74838.
  • Pang, C., S. Liu, and Y. Han. 2019. Coherent detection algorithm for radar maneuvering targets based on discrete polynomial-phase transform. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12 (9):3412–22. doi: 10.1109/JSTARS.2019.2929655.
  • Pei, S. C, and J. J. Ding. 2000. Simplified fractional Fourier transform. Journal of the Optical Society of America. A, Optics, Image Science, and Vision 17 (12):2355–67. doi: 10.1364/josaa.17.002355.
  • Perry, R. P., R. C. Dipietro, and R. L. Fante. 1999. SAR imaging of moving targets. IEEE Transactions on Aerospace and Electronic Systems 35 (1):188–200. doi: 10.1109/7.745691.
  • Qian, J., X. Lv, M. Meng, L. Li, and Z. Zhang. 2010. Parameter estimation of the fast moving target based on tri-channel airborne SAR-GMTI. J. Xidian Univ 37 (2):235–41.
  • Rao, R. V. 2016. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations 7:19–34. doi: 10.5267/j.ijiec.2015.8.004.
  • Tabjula, J., S. Kalyani, P. Rajagopal, and B. Srinivasan. 2021. Statistics-based baseline-free approach for rapid inspection of delamination in composite structures using ultrasonic guided waves. Structural Health Monitoring. doi: 10.1177/14759217211073335.
  • Tian, M., G. Liao, S. Zhu, Y. Liu, X. He, and Y. Li. 2020. Long-time coherent integration and motion parameters estimation of radar moving target with unknown entry/departure time based on SAF-WLVT. Digital Signal Processing 107:102854. doi: 10.1016/j.dsp.2020.102854.
  • Tsao, J, and B. D. Steinber. 1988. Reduction of sidelobe and speckle artifacts in microwave imaging. IEEE Transactions on Antennas and Propagation 36 (4):543–56. doi: 10.1109/8.1144.
  • Wang, W. Q. 2007. Approach of multiple moving targets detection for microwave surveillance sensors. International Journal of Information Acquisition 04 (01):57–68. doi: 10.1142/S0219878907001162.
  • Wang, W.-Q. 2011. Moving target indication via three-antenna SAR with simplified fractional Fourier transform. EURASIP Journal on Advances in Signal Processing 2011 (1) doi: 10.1186/1687-6180-2011-117.
  • Wang, W. Q., C. B. Ding, and X. D. Liang. 2008. Time and phase synchronization via directpath signal for bistatic synthetic aperture radar systems. IET Radar, Sonar & Navigation 2 (1):1–11. doi: 10.1049/iet-rsn:20060097.
  • Wong, F. H, and T. S. Yeo. 2001. New applications of nonlinear chirp scaling in SAR data processing. IEEE Transactions on Geoscience and Remote Sensing 39 (5):946–53. doi: 10.1109/36.921412.
  • Yang, J., X. H. T. Jin, J. Thompson, and Z. Zhou. 2011. New approach for SAR imaging of ground moving targets based on a Keystone transform. Ieee Geoscience and Remote Sensing Letters. 8 (4):829–33.
  • Yang, J., C. Liu, and Y. Wang. 2015. Detection and imaging of ground moving targets with real SAR Data. IEEE Transactions on Geoscience and Remote Sensing 53 (2):920–32.
  • Yang, L., T. Wang, and Z. Bao. 2008. GMTI using an In-SAR system with a hybrid baseline. IEEE Geoscience and Remote Sensing Letters 5 (3):373–7.
  • Zhang, X., G. Liao, S. Zhu, C. Zeng, and Y. Shu. 2015. Geometry-information-aided efficient radial velocity estimation for moving target imaging and location based on radon transform. IEEE Transactions on Geoscience and Remote Sensing 53 (2):1105–17.
  • Zhang, H., T. Shan, S. Liu, and R. Tao. 2020. Optimized sparse fractional Fourier transform: Principle and performance analysis. Signal Processing 174:107646. doi: 10.1016/j.sigpro.2020.107646.
  • Zheng, M. J., R. L. Yang, and J. C. Zhou. 2003. A new method of moving targets detection and imaging based on multi-phase center antenna. Modern Radar in Chinese 25 (12):55–7.
  • Zhu, S., G. Liao, Y. Qu, Z. Zhou, and X. Liu. 2011. Ground moving targets imaging algorithm for synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing 49 (1):462–77. doi: 10.1109/TGRS.2010.2053848.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.