145
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Mining Association Rules from a Single Large Graph

, , , , , , , ORCID Icon, & show all

References

  • Abdelhamid, E., I. Abdelaziz, P. Kalnis, Z. Khayyat, and F. Jamour. 2016. ScaleMine: Scalable parallel frequent subgraph mining in a single large graph. SC’16: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 716–727, doi:10.1109/SC.2016.60.
  • Aridhi, S., and E. M. Nguifo. 2016. Big graph mining: Frameworks and techniques. Big Data Research 6:1–10. doi:10.1016/j.bdr.2016.07.002.
  • Bhatia, V., and R. Rani. 2018. Ap-FSM: A parallel algorithm for approximate frequent subgraph mining using pregel. Expert Systems with Applications 106:217–32. doi:10.1016/j.eswa.2018.04.010.
  • Coscia, M., and M. Szell. 2021. Multilayer graph association rules for link prediction. Proceedings of the International AAAI Conference on Web and Social Media 15 (1):129–39. doi:10.1609/icwsm.v15i1.18047.
  • Diane, J. C., and B. H. Lawrence. 1994. Substructure discovery using minimum description length and background knowledge. Journal of Artificial Intelligence Research 1 (1):231–55.
  • El-Moussaoui, M., M. Hanine, A. Kartit, and T. Agouti. 2021. “A novel approach of community detection using association rules learning: Application to user’s friendships of online social networks”. In Innovations in smart cities applications, Volume 4, Lecture Notes in Networks and Systems, vol. 183, 29–43. Springer, Cham. doi:10.1007/978-3-030-66840-2_3.
  • Elseidy, M., E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. 2014. GraMi: frequent subgraph and pattern mining in a single large graph. Proceedings of the VLDB Endowment 7 (7):517–28. doi:10.14778/2732286.2732289.
  • Fan, W., X. Wang, Y. Wu, and J. Xu. 2015. Association rules with graph patterns. Proceedings of the VLDB Endowment 8 (12):1502–13. doi:10.14778/2824032.2824048.
  • Hendrickx, T., B. Cule, and B. Goethals. 2014. Mining Cohesive Itemsets in Graphs. In Discovery Science. DS 2014. Lecture Notes in Computer Science, eds. S. Džeroski, P. Panov, D. Kocev, and L. Todorovski, vol. 8777, 111–22. Switzerland: Springer International Publishing. doi:10.1007/978-3-319-11812-3_10.
  • Hendrickx, T., B. Cule, P. Meysman, S. Naulaerts, K. Laukens, and B. Goethals. 2015. Mining association rules in graphs based on frequent cohesive itemsets. In Advances in Knowledge Discovery and Data Mining. PAKDD 2015. Lecture Notes in Computer Science, eds. T. Cao, E. P. Lim, Z. H. Zhou, T. B. Ho, D. Cheung, and H. Motoda, vol 9078, 637–48. Springer, Cham. doi:10.1007/978-3-319-18032-8_50.
  • Jie, F., C. Wang, F. Chen, L. Li, and X. Wu. 2020. A framework for subgraph detection in interdependent networks via graph block-structured optimization. IEEE Access 8:157800–18. doi:10.1109/ACCESS.2020.3018497.
  • Karabadji, N. E. I., S. Aridhi, and H. Seridi. 2016. A closed frequent subgraph mining algorithm in unique edge label graphs. In Machine Learning and Data Mining in Pattern Recognition. MLDM 2016. Lecture Notes in Computer Science, ed. P. Perner, vol. 9729, 43–57. Springer, Cham. doi:10.1007/978-3-319-41920-6_4.
  • Khan, A., X. Yan, and K. L. Wu. 2010. Towards proximity pattern mining in large graphs. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data (SIGMOD’10). Association for Computing Machinery, New York, NY, 867–878. doi:10.1145/1807167.1807261.
  • Le, N. T., B. Vo, L. B. Q. Nguyen, H. Fujita, and B. Le. 2020. Mining weighted subgraphs in a single large graph. Information Sciences 514:149–65. doi:10.1016/j.ins.2019.12.010.
  • Namaki, M. H., Y. Wu, Q. Song, P. Lin, and T. Ge. 2017. Discovering graph temporal association rules. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (CIKM’17). Association for Computing Machinery, New York, NY, 1697–1706. doi:10.1145/3132847.3133014.
  • Nguyen, L. B. Q., L. T. T. Nguyen, B. Vo, I. Zelinka, J. C.-W. Lin, U. Yun, and H. S. Nguyen. 2022. An efficient and scalable approach for mining subgraphs in a single large graph. Applied Intelligence 52 (15):17881–95. doi:10.1007/s10489-022-03164-5.
  • Nguyen, L. B. Q., L. T. T. Nguyen, I. Zelinka, V. Snasel, H. S. Nguyen, and B. Vo. 2021. A method for closed frequent subgraph mining in a single large graph. IEEE Access 9:165719–33. doi:10.1109/ACCESS.2021.3133666.
  • Nguyen, L. B. Q., B. Vo, N. T. Le, V. Snasel, and I. Zelinka. 2020. Fast and scalable algorithms for mining subgraphs in a single large graph. Engineering Applications of Artificial Intelligence 90:103539. doi:10.1016/j.engappai.2020.103539.
  • Nguyen, L. B. Q., I. Zelinka, V. Snasel, L. T. T. Nguyen, and B. Vo. 2022. Subgraph mining in a large graph: A review. WIREs Data Mining and Knowledge Discovery 12 (4):e1454. doi:10.1002/widm.1454.
  • Qiao, F., X. Zhang, P. Li, Z. Ding, S. Jia, and H. Wang. 2018. A parallel approach for frequent subgraph mining in a single large graph using spark. Applied Sciences 8 (2):230. doi:10.3390/app8020230.
  • Senthilselvan, N., V. Subramaniyaswamy, V. Vijayakumar, H. R. Karimi, N. Aswin, and L. Ravi. 2020. Distributed frequent subgraph mining on evolving graph using SPARK. Intelligent Data Analysis 24 (3):495–513. doi:10.3233/IDA-194601.
  • Sun, X., Y. Tan, Q. Wu, B. Chen, and C. Shen. 2019. TM-miner: TFS-based algorithm for mining temporal motifs in large temporal network. IEEE Access 7:49778–89. doi:10.1109/ACCESS.2019.2911181.
  • Wang, X., Y. Xu, R. Zhao, J. Lin, and H. Zhan. 2019. GparMiner: A system to mine graph pattern association rules. In Database Systems for Advanced Applications. DASFAA 2019. Lecture Notes in Computer Science, eds. G. Li, J. Yang, J. Gama, J. Natwichai, and Y. Tong, vol. 11448, 547–52. Springer, Cham. doi:10.1007/978-3-030-18590-9_84.
  • Washio, T., and H. Motoda. 2003. State of the art of graph-based data mining. ACM SIGKDD Explorations Newsletter 5 (1):59–68. doi:10.1145/959242.959249.
  • Yoshida, K., H. Motoda, and N. Indurkhya. 1994. Graph-based induction as a unified learning framework. Applied Intelligence 4 (3):297–316. doi:10.1007/BF00872095.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.