217
Views
0
CrossRef citations to date
0
Altmetric
Articles

PDEModelica1: a Modelica language extension for partial differential equations implemented in OpenModelica

ORCID Icon, ORCID Icon &
Pages 128-137 | Received 04 Oct 2017, Accepted 09 Nov 2017, Published online: 28 Dec 2017

References

  • Fritzson P. Principles of object-oriented modeling and simulation with Modelica 3.3: a cyber-physical approach. Hoboken (NJ): Wiley; 2014.10.1002/9781118989166
  • Elmqvist H, Mattsson SE, Otter M. Modelica: the new object-oriented modeling language. 12th European Simulation Multiconference; Manchester; 1998.
  • Mateják, M, Kulhánek, T, Šilar, J, et al. Physiolibrary-Modelica library for physiology. In Proceedings of the 10th International Modelica Conference; 2014 Mar 10–12; Lund: Linköping University Electronic Press; 2014. p. 499–505.
  • Kofránek J, Mateják M, Privitzer P, et al. Hummod-golem edition: large scale model of integrative physiology for virtual patient simulators. In: Proceedings of the International Conference on Modeling, Simulation and Visualization Methods (MSV); Las Vegas (NV): The Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp); 2013. p. 1.
  • Matejak M, Kofranek J. Physiomodel-an integrative physiology in Modelica. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE, 2015. p. 1464–1467.10.1109/EMBC.2015.7318646
  • Ježek F, Tribula M, Kulhánek T, et al. Surviving sepsis-a 3d 18 integrative educational simulator. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE; 2015. p. 3679–3682.
  • Randall Thomas S, Layton AT, Layton HE, et al. Kidney modeling: status and perspectives. Proc IEEE. 2006;94(4):740–752.
  • Moss R, Randall Thomas S. Hormonal regulation of salt and water excretion: a mathematical model of whole kidney function and pressure natriuresis. Am J Physiol-Renal Physiol. 2014;306(2):F224–F248.
  • The functional mockup interface (fmi). Available from: https://www.fmi-standard.org/
  • Stavåker K, Ronnås S, Wlotzka M, et al. PDE modeling with Modelica via FMI import of Hi-Flow3 C++ components. Proceedings of SIMS 54th Conference; Bergen, Norway; 2013.
  • Anzt H, Augustin W, Baumann M, et al. Hiflow3-a flexible and hardware-aware parallel finite element package. Preprint Series of the Engineering Mathematics and Computing Lab, (06), 2013.
  • Casella F., Leva A.. Modelling of thermo-hydraulic power generation processes using Modelica. Math Comput Model Dynam Syst. 2006;12(1):19–33.10.1080/13873950500071082
  • Casella F, Schiavo F. Modelling and simulation of heat exchangers in Modelica with finite element methods. In Proceedings of the 3rd International Modelica Conference; Linköping, Sweden; 2003.
  • Dhatt G, Lefrançois G, Touzot E. Finite element method. New Jersey, NJ: Wiley; 2012.10.1002/9781118569764
  • Dshabarow F, Cellier FE, Zimmer D, et al. Support for Dymola in the modeling and simulation of physical systems with distributed parameters. In: Proceedings of the 6th International Modelica Conference; 2007. p. 683–690.
  • Dshabarow F. Support for Dymola in the modeling and simulation of physical systems with distributed parameters [master’s thesis]. Zürich: Department Für Computational Science, ETH Zürich, 2007.
  • Schiesser WE, Schiesser WE. The numerical method of lines: integration of partial differential equations, Vol. 212. San Diego (CA): Academic Press; 1991.
  • Eymard R, Gallouët T, Herbin R. Finite volume methods. Handbook of numerical analysis. 2000;7:713–1018.
  • Saldamli L. A High-Level Language for Modeling with Partial Differential Equations [PhD thesis]. Linköping: Department of Computer and Information Science, Linköping University; 2006.
  • Strikwerda JC. Finite difference schemes and partial differential equations. Philadelphia (PA): SIAM e-books. Society for Industrial and Applied Mathematics; 2004.
  • Sheshadri K., Fritzson P.. A general symbolic PDE solver generator: beyond explicit schemes. Sci Program. 2003;11(3):225–235.10.1155/2003/720214
  • Khan S. Discretizing PDEs for MapleSim. Technical report. Adept Scientific; 2012.
  • Saldamli L, Fritzson P. Object-oriented modeling with partial differential equations. In Modelica Workshop. Citeseer, Linköping, Sweden; 2000.
  • Saldamli L, Fritzson P. A Modelica-based language for objectoriented modeling with partial differential equations. In 4th International EuroSim Congress; 2001 Jun 26–29; Delft.
  • Saldamli L, Fritzson P. Domains and partial differential equations in Modelica. In 42nd Conference on Simulation and Modeling (SIMS2001); 2001 Oct 8–9; Porsgrunn: Telemark University.
  • Saldamli L. PDEModelica-towards a high-level language for modeling with partial differential equations [Licentiate thesis]. Linköping: Department of Computer and Information Science, Linköping University; 2002.
  • Saldamli L, Fritzson P, Bachmann B. Extending Modelica for partial differential equations. In: Proceedings of 2nd International Modelica Conference; Oberpfaffenhofen, Germany; 2002. p. 307–314.
  • Saldamli L, Fritzson P. Field type and field constructor in Modelica. In SIMS 2004, the 45th Conference on Simulation and Modellin; København, Denmark; 2004.
  • Saldamli L, Bachmann B, Wiesmann H, et al. A framework for describing and solving PDE models in Modelica. Paper presented at the 4th International Modelica Conference; Hamburg-Harburg, Germany; 2005.
  • Li Z-h, Zhang H-l, Zheng L. Consistent representation of PDE and DAE problems in Modelica. J Syst Simul. 2009;15:021.
  • Li Z, Zhang H, Zheng L. Description of PDE models in Modelica. In: International Symposium on Computer Science and Computational Technology, 2008. ISC-SCT’08; Vol. 1; Shanghai, China: IEEE; ; 2008. p. 809–813.10.1109/ISCSCT.2008.347
  • Li Z, Zheng L, Zhang H. Solving PDE models in Modelica. In: Proceedings of the 2008 International Symposium on Information Science and Engineering; Vol. 01; IEEE Computer Society; 2008. p. 53–57.
  • Li Z, Zheng L, Zhang H. Modelling and simulation of PDE problems in Modelica. Int J Mater Struct Integrity. 2009;3(4):318–331.10.1504/IJMSI.2009.029339
  • Elmqvist H, Henningsson T, Otter M. Systems modeling and programming in a unified environment based on Julia. In International Symposium on Leveraging Applications of Formal Methods; Springer; 2016. p. 198–217.
  • Bezanson J, Karpinski S, Shah VB, et al. Julia: a fast dynamic language for technical computing. 2012. arXiv preprint arXiv:1209.5145.
  • Philip Kahl M. Thermoregulation in the wood stork, with special reference to the role of the legs. Physiol Zool. 1963;36(2):141–151.
  • Mitchell JW, Myers GE. An analytical model of the countercurrent heat exchange phenomena. Biophys J. 1968;8(8):897–911.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.