83
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Using spatial games to model and simulate tomato spotted wilt virus-western flowers thrip dynamic system

, , &
Pages 243-253 | Received 05 Apr 2017, Accepted 15 Feb 2018, Published online: 23 Feb 2018

References

  • Brittlebank CC. Tomato diseases. J Depart Agric. 1919;17:213–235.
  • Samuel G, Bald JG, Pittman HA. Investigations on ‘spotted wilt’ of tomatoes. Bull Council Sci Ind Res. 1930;44:64.
  • Sherwood JL, German TL, Moyer JW, et al. Tomato spotted wilt virus. Plant Health Instructor. 2003. doi:10.1094/PHI-I-2003-0613-02.
  • Plant viruses spread by thrips. Department of Employment, Economic Development and Innovation, Agri-Science Queensland. Available from: https://www.daf.qld.gov.au/__data/assets/pdf_file/0007/58777/Thrip-viruses-veg-crops.pdf
  • Zitter TA, Daughtrey ML, Sanderson JP. Tomato spotted wilt virus. Vegetable crops, cooperative extension. New York (NY): Cornell University; 1989.
  • Whitfield AE, Ullman DE, German TL. Tospovirus-thrips interactions. Annu Rev Phytopathol. 2005;43:459–489.10.1146/annurev.phyto.43.040204.140017
  • Nagata T, Peters D. An anatomical perspective of tospovirus transmission. Virus-Insect-Plant Interact. 2001;51–67.10.1016/B978-012327681-0/50006-6
  • Ullman DE, Meideros R, Campbell LR, et al. Thrips as vectors of tospoviruses. Adv Bot Res. 2002;36:113–140.10.1016/S0065-2296(02)36061-0
  • Sether DM, DeAngelis JD. Tomato spotted wilt virus host list and bibliography. Special Report No. 888. Corvallis (OG): Agricultural Experiment Station; 1992.
  • Hobbs HA, Johnson RR, Story RN, et al. Weed hosts and thrips transmission of tomato spotted wilt virus in Louisiana. Int Sympos Tospoviruses Thrips Floral Vegetable Crops. 1996;431:291–297.
  • Johnson RR, Black LL, Hobbs HA, et al. Association of Frankliniella fusca and three winter weeds with tomato spotted wilt virus in Louisiana. Plant Dis. 1995;79:572–576.10.1094/PD-79-0572
  • Chatzivassiliou EK, Boubourakas I, Drossos E, et al. Weeds in greenhouses and tobacco fields are differentially infected by tomato spotted wilt virus and infested by its vector species. Plant Dis. 2001;85:40–46.10.1094/PDIS.2001.85.1.40
  • Wu CH, Zhao SN, Kuang Y, et al. New mathematical models for vector-borne disease: transmission of tomato spotted wilt virus. In: Shih Y-C, Max Liang S-F, editors. Bridging research and good practices towards patient welfare. Taipei: CRC Press; 2014. p. 259–268.
  • Ullman D, Cho J, Mau R, et al. A midgut barrier to tomato spotted wilt virus acquisition by adult western flower thrips. Phytopathology. 1992;82:1333–1342.10.1094/Phyto-82-1333
  • van de Wetering F, Goldbach R, Peter D. Tomato spotted wilt tospovirus ingestion by first instar larvae of Frankliniella occidentalis is a prerequisite for transmission. Phytopathology. 1996;86:900–905.10.1094/Phyto-86-900
  • Smid HM, Nagata T, Goldbach R, et al. Tissue tropism related to vector competence of Frankliniella occidentalis for tomato spotted wilt tospovirus. J Gen Virol. 1999;80(2):507–515.10.1099/0022-1317-80-2-507
  • de Assis Filho FM, Deom CM, Sherwood JL. Acquisition of tomato spotted wilt virus by adults of two thrips species. Phytopathology. 2004;94:333–336.10.1094/PHYTO.2004.94.4.333
  • Stafford-Banks C, Rotenberg D, Johnson BR, et al. Analysis of the salivary gland transcriptome of Frankliniella occidentalis. PLoS ONE. 2014;9:e94447.10.1371/journal.pone.0094447
  • Allen CT, Kharboutli MS, McAllister CD, et al. Thrips, weeds, and tomato spotted wilt virus. Arkansas Agric Exp Station. 2000;475:11–16.
  • Olatinwo RO, Paz JO, Brown SL, et al. A predictive model for spotted wilt epidemics in peanut based on local weather conditions and the tomato spotted wilt virus risk index. Phytopathology. 2008;98:1066–1074.10.1094/PHYTO-98-10-1066
  • Magarey RD, Fowler GA, Borchert DM, et al. NAPPFAST: an internet system for the weather-based mapping of plant pathogens. Plant Dis. 2007;91:336–345.10.1094/PDIS-91-4-0336
  • Chappell TM, Beaudoin ALP, Kennedy GG. Interacting virus abundance and transmission intensity underlie tomato spotted wilt virus incidence: an example weather-based model for cultivated tobacco. PLoS ONE. 2013;8:e73321.10.1371/journal.pone.0073321
  • Morsello SC, Kennedy GG. Spring temperature and precipitation affect tobacco thrips, Frankliniella fusca, population growth and Tomato spotted wilt virus spread within patches of the winter annual weed Stellaria media. Entomol Exp Appl. 2009;130:138–148.10.1111/eea.2009.130.issue-2
  • Morsello SC, Beaudoin ALP, Groves RL, et al. The influence of temperature and precipitation on spring dispersal of Frankliniella fusca changes as the season progresses. Entomol Exp Appl. 2010;134:260–271.10.1111/eea.2010.134.issue-3
  • Jeger M, van den Bosch F, McRoberts N. Modelling transmission characteristics and epidemic development of the tospovirus – thrip interaction. Arthropod-Plant Inter. 2015;9:107–120.10.1007/s11829-015-9363-2
  • Ogada PA, Moualeu DP, Poehling HM. Predictive models for tomato spotted wilt virus spread dynamics, considering Frankliniella occidentalis specific life processes as influenced by the virus. PLoS ONE. 2016;11(5):e0154533.10.1371/journal.pone.0154533
  • Ogada PA, Maiss E, Poehling H-M. Influence of tomato spotted wilt virus on performance and behaviour of western flower thrips (Frankliniella occidentalis). J Appl Entomol. 2013;137:488–498.10.1111/jen.2013.137.issue-7
  • Shalileh S, Ogada PA, Moualeu DP, et al. Manipulation of Frankliniella occidentalis (Thysanoptera: Thripidae) by Tomato Spotted Wilt Virus (Tospovirus) via the host plant nutrients to enhance its transmission and spread. Environ Entomol. 2016;45(5):1235–1242.10.1093/ee/nvw102
  • Zhao SN, Wu J, Ben-Arieh D. Modeling infection spread and behavioral change using spatial games. Health Syst. 2015;4(1):41–53.10.1057/hs.2014.22
  • Lewontin RC. Evolution and the theory of games. J Theor Biol. 1961;1(3):382–403.10.1016/0022-5193(61)90038-8
  • Lozano S, Arenas A, Sánchez A. Mesoscopic structure conditions the emergence of cooperation on social networks. PLoS ONE. 2008;3(4):e1892.10.1371/journal.pone.0001892
  • Santos FC, Pacheco JM, Lenaerts T. Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc Nat Acad Sci. 2006;103(9):3490–3494.10.1073/pnas.0508201103
  • Roca CP, Cuesta JA, Sánchez A. Evolutionary game theory: temporal and spatial effects beyond replicator dynamics. Phys Life Rev. 2009;6(4):208–249.10.1016/j.plrev.2009.08.001
  • Newth D, Cornforth D. Asynchronous spatial evolutionary games. Biosystems. 2009;95(2):120–129.10.1016/j.biosystems.2008.09.003
  • Kirk WDJ, Terry Li. The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agric Forest Entomol. 2003;5:301–310.10.1046/j.1461-9563.2003.00192.x
  • Managing western flower thrips on greenhouse crops, integrated pest management. University of Connecticut. Available from: http://ipm.uconn.edu/documents/raw2/Managing%20Western%20Flower%20Thrips%20on%20Greenhouse%20Crops/Managing%20Western%20Flower%20Thrips%20on%20Greenhouse%20Crops.php?aid=204
  • Saltelli A. Sensitivity analysis for importance assessment. Risk Anal. 2002;22(3):1–12.
  • Saltelli A, Ratto M, Andres T, et al. Global sensitivity analysis: the primer. Chichester: Wiley; 2008.
  • TA. Zitter, ML. Daughtrey. Vegetable crops: tomato spotted wilt virus. [Internet]; 1989.Available from: http://vegetablemdonline.ppath.cornell.edu/factshe
  • Robb KL, Parella MP, Newman JP. The biology and control of western flower thrips. Part I. Ohio Florosts Assoc Bull. 1988;699:2–5.
  • Gillespie DL. The effectiveness of biological control of Frankliniella occidentalis in prevention of the spread of tomato spotted wilt virus [master thesis]. Manhattan, KS: Kansas State University; 2009.
  • Wu J, Ben-Arieh D, Shi ZZ. An autonomous multi-agent simulation model for acute inflammatory response. Int J Artif Life Res. 2011;2(2):105–121.10.4018/IJALR
  • Shi ZZ, Wu CH, Ben-Arieh D. Agent-based model: a surging tool to simulate infectious diseases in the immune system. Open J Model Simul. 2014;2(1):12–22.10.4236/ojmsi.2014.21004
  • Shi Z, Chapes SK, Ben-Arieh D, et al. An agent-based model of a hepatic inflammatory response to Salmonella: a computational study under a large set of experimental data. PLoS ONE. 2016;11:e0161131.10.1371/journal.pone.0161131
  • Zhao SN, Kuang Y, Wu CH, et al. Zoonotic visceral Leishmaniasis transmission: modeling, backward bifurcation, and optimal control. J Math Biol. 2016;73:1525–1560.10.1007/s00285-016-0999-z
  • Fleming WH, Rishel RW. Deterministic and stochastic optimal control. New York (NY): Springer; 1975.10.1007/978-1-4612-6380-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.