598
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

A systematic review of mathematical models of the Ebola virus disease

, &
Pages 814-830 | Received 22 Dec 2020, Accepted 18 Sep 2021, Published online: 28 Sep 2021

References

  • Magal P, Ruan S. Structured population models in biology and epidemiology. Vol. 1936. Berlin: Springer; 2008.
  • Sarma N. Emerging and re-emerging infectious diseases in South East Asia. Indian J Dermatol. 2017;09;62:451–455.
  • WHO. Ten threats to global health in 2019 [https://www.who.int/news-room/feature-stories/ten-threats-to-global-health-in-2019]; 2020. Accessed 2020 02 11.
  • CDC. 40 years of Ebola virus disease around the world [http://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease]; 2018. Accessed 2018 08 28.
  • Walsh M, Siddiqi H. The landscape configuration of zoonotic transmission of Ebola virus disease in West and Central Africa: interaction between population density and vegetation cover. PeerJ. 2015;01:3.
  • Berge T, Bowong S, Lubuma J, et al. Modeling Ebola virus disease transmissions with reservoir in a complex virus life ecology. Math Biosci Eng. 2018;15:21–56.
  • Leroy E, Kumulungui B, Pourrut X, et al. Fruit bats as reservoirs of Ebola virus. Nature. 2006 01;438:575–581.
  • Murphy FA. Ebola virus disease-an introduction. 2018 [cited 2018 Aug 28]. http://www.searo.who.int/entity/emerging–diseases/ebola/ebola–virus–disease–intro.pdf?ua=1
  • Chippaux J-P. Outbreaks of Ebola virus disease in Africa: the beginnings of a tragic saga. J Venom Anim Toxins Incl Trop Dis. 2014 10;20(1):44.
  • Levy B, Edholm C, Gaoue O, et al. Modeling the role of public health education in Ebola virus disease outbreaks in Sudan. Infect Dis Model. 2017 06; 2(3): 323–340.
  • Francesconi P, Yoti Z, Declich S, et al. Ebola hemorrhagic fever transmission and risk factors of contacts, Uganda1. Emerg Infect Diseases. 2003 12; 9(11): 1430–1437.
  • Namilae S, Derjany P, Mubayi A, et al. Multiscale model for pedestrian and infection dynamics during air travel. Phys Rev E. 2017 5; 95(5): 052320–052327.
  • WHO. Ebola virus disease [http://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease]; 2018. Accessed 2018 08 28.
  • Zitzmann C, Kaderali L. Mathematical analysis of viral replication dynamics and antiviral treatment strategies: from basic models to age-based multi-scale modeling. Front Microbiol. 2018 07;9:1546.
  • Chowell G, Nishiura H. Transmission dynamics and control of Ebola virus disease (EVD): a review. BMC Med. 2014 10;12(1):196.
  • Drake J, Bakach I, Just R. Transmission models of historical Ebola outbreaks. Transmission models of historical Ebola outbreaks. Emerg Infect Diseases. 2015 08;21(8):1447–1450.
  • Van Kerkhove M, Bento A, Ferguson N, et al. A review of epidemiological parameters from Ebola outbreaks to inform early public health decision-making. Nat Sci Data. 2015;2(05):1–10.
  • Chretien J-P, Riley S, George DB. Mathematical modeling of the West Africa Ebola epidemic. eLife. 2015;4:e09186.
  • Chowell G, Sattenspiel L, Bansal S, et al. Mathematical models to characterize early epidemic growth: a review. Phys Life Rev. 2016;18:66–97.
  • Wong ZSY, Bui CM, Chughtai AA, et al. A systematic review of early modelling studies of Ebola virus disease in West Africa. Epidemiol Infect. 2017;145(6):1069–1094.
  • Chowell G, Viboud C, Simonsen L, et al. Perspectives on model forecasts of the 2014–2015 Ebola epidemic in West Africa: lessons and the way forward. BMC Med. 2017 12; 15(1): 42.
  • Viboud C, Sun K, Gaffey R, et al. The RAPIDD Ebola forecasting challenge: synthesis and lessons learnt. Epidemics 2018;22:13–21.
  • Dembek ZF, Chekol T, Wu A. Best practice assessment of disease modelling for infectious disease outbreaks. Epidemiol Infect. 2018;146(10):1207–1215.
  • WHO. Origins of the 2014 Ebola epidemic [http://www.who.int/csr/disease/ebola/one-year-report/virus-origin/en/]; 2015. Accessed 2018 09 03.
  • Faye O, Boelle P-Y, Heleze E, et al. Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: an observational study. Lancet Infect Dis. 2015;15(3):320–326.
  • Halfmann P, Kim JH, Ebihara H, et al. Generation of biologically contained Ebola viruses. Proc Nat Acad Sci. 2008;105(4):1129–1133.
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336–341.
  • Falagas ME, Pitsouni EI, Malietzis GA, et al. Comparison of pubmed, scopus, web of science, and google scholar: strengths and weaknesses. FASEB J. 2008;22(2):338–342.
  • Bender EA. An introduction to mathematical modeling. Courier Corporation. 2012.
  • Lopez LF, Amaku M, Coutinho FAB, et al. Modeling importations and exportations of infectious diseases via travelers. Bull Math Biol. 2016;78(2):185–209.
  • Wiratsudakul A, Triampo W, Laosiritaworn Y, et al. A one-year effective reproduction number of the 2014–2015 Ebola outbreaks in the widespread West African countries and quantitative evaluation of air travel restriction measure. Travel Med Infect Dis. 2016;14(5):481–488.
  • Sau A. A simulation study on hypothetical Ebola virus transmission in India using spatiotemporal epidemiological modeler (STEM): a way towards precision public health. J Environ Public Health. 2017;2017.
  • Backer JA, Wallinga J. Spatiotemporal analysis of the 2014 Ebola epidemic in West Africa. PLoS Comput Biol. 2016. 12. 12(12):1–17.
  • Lau MS, Gibson GJ, Adrakey H, et al. A mechanistic spatio-temporal framework for modelling individual-to-individual transmission—with an application to the 2014-2015 West Africa Ebola outbreak. PLoS Comput Biol. 2017;13:10.
  • D’Silva JP, Eisenberg MC. Modeling spatial invasion of Ebola in West Africa. J Theor Biol. 2017;428:65–75.
  • Moss R, Hickson RI, McVernon J, et al. Model-informed risk assessment and decision making for an emerging infectious disease in the Asia-Pacific region. PLoS Negl Trop Dis. 2016;10:9.
  • Viboud C, Simonsen L, Chowell G. A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics. 2016;15:27–37.
  • Santermans E, Robesyn E, Ganyani T, et al. Spatiotemporal evolution of Ebola virus disease at sub-national level during the 2014 West Africa epidemic: model scrutiny and data meagreness. PLOS ONE. 2016 01;11(1):1–11.
  • Chowell G, Viboud C, Simonsen L, et al. Characterizing the reproduction number of epidemics with early subexponential growth dynamics. J Royal Soc Interface. 2016;13:123.
  • Perez-Acle T, Fuenzalida I, Martin A, et al. Stochastic simulation of multiscale complex systems with PISKaS: a rule-based approach. Biochem Biophys Res Commun. 2017;11:498.
  • Gómez-Barroso D, de Velasco ER, Varela C, et al. Spread of Ebola virus disease based on the density of roads in West Africa. Geospat Health. 2017;12:2.
  • Kramer AM, Pulliam JT, Alexander LW, et al. Spatial spread of the West Africa Ebola epidemic. R Soc Open Sci. 2016;3:8.
  • Adams B. Household demographic determinants of Ebola epidemic risk. J Theor Biol. 2016;392:99–106.
  • Kiskowski M, Chowell G. Modeling household and community transmission of Ebola virus disease: epidemic growth, spatial dynamics and insights for epidemic control. Virulence. 2016;7(2):163–173.
  • Ajelli M, Merler S, Fumanelli L, et al. Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: a computational modeling analysis. BMC Med. 2016;09:14.
  • Nguyen VK, Mikolajczyk R, Hernandez-Vargas EA. High-resolution epidemic simulation using within-host infection and contact data. BMC Public Health. 2018;18:1.
  • House T, Ford A, Lan S, et al. Bayesian uncertainty quantification for transmissibility of influenza, norovirus and Ebola using information geometry. J Royal Soc Interface. 2016;13:121.
  • Martyushev A, Nakaoka S, Sato K, et al. Modelling Ebola virus dynamics: implications for therapy. Antiviral Res. 2016;135:62–73.
  • Tsanou B, Lubuma J, Moremedi M, et al. A simple mathematical model for Ebola in Africa. J Biol Dyn. 2016;08:11.
  • Zinszer K, Morrison K, Verma A, et al. Spatial determinants of Ebola virus disease risk for the West African epidemic. PLoS Curr. 2017;03:9.
  • Guo Z, Xiao D, Li D, et al. Predicting and evaluating the epidemic trend of Ebola virus disease in the 2014-2015 outbreak and the effects of intervention measures. PLoS One. 2016;11:4.
  • Schmidt J, Park A, Kramer A, et al. Spatiotemporal fluctuations and triggers of Ebola virus spillover. Emerg Infect Diseases. 2017;03:23.
  • Krauer F, Gsteiger S, Low N, et al. Heterogeneity in district-level transmission of Ebola virus disease during the 2013-2015 epidemic in West Africa. PLoS Negl Trop Dis. 2016 07;10(7):1–14.
  • Valeri L, Patterson-Lomba O, Gurmu Y, et al. Predicting subnational Ebola virus disease epidemic dynamics from sociodemographic indicators. PLOS ONE. 2016 10;11(10):1–16.
  • Li Q, Lu F, Dai C, et al. Simulating the potential role of media coverage and infected bats in the 2014 Ebola outbreak. J Theor Biol. 2017;412:123–129.
  • Rizzo A, Pedalino B, Porfiri M. A network model for Ebola spreading. J Theor Biol. 2016;394:212–222.
  • Fang LQ, Yang Y, Jiang JF, et al. Transmission dynamics of Ebola virus disease and intervention effectiveness in Sierra Leone. Proce Nat Acad Sci. 2016;113:4488–4493.
  • Webb G, Browne C. A model of the Ebola epidemics in West Africa incorporating age of infection. J Biol Dyn. 2016;10(1):18–30.
  • Ngwa G, Teboh-Ewungkem M. A mathematical model with quarantine states for the dynamics of Ebola virus disease in human populations. Comput Math Methods Med. 2016;01:2016.
  • Lachiany M, Louzoun Y. Effects of distribution of infection rate on epidemic models. Phys Rev E. 2016;08:94.
  • Taylor BP, Dushoff J, Weitz JS. Stochasticity and the limits to confidence when estimating R0 of Ebola and other emerging infectious diseases. J Theor Biol. 2016;408:145–154.
  • Frasso G, Lambert P. Bayesian inference in an extended SEIR model with nonparametric disease transmission rate: an application to the Ebola epidemic in Sierra Leone. Biostatistics (Oxford, England). 2016;06:17.
  • Pettey W, Carter M, Toth D, et al. Constructing Ebola transmission chains from West Africa and estimating model parameters using internet sources. Epidemiol Infect. 2017;145(05):1–10.
  • Vanhems P, Raesfeldt R, Ecochard R, et al. Emergence of Ebola virus disease in a French acute care setting: a simulation study based on documented inter-individual contacts. Sci Rep. 2016;11:6.
  • Yan Q, Tang S, Xiao Y. Impact of individual behaviour change on the spread of emerging infectious diseases. Stat Med. 2018;37(6):948–969.
  • Sharareh N. The Ebola crisis and the corresponding public behavior: a system dynamics approach. PLOS Curr Outbreaks. 2016;11:8.
  • Champredon D, Li M, Bolker BM, et al. Two approaches to forecast Ebola synthetic epidemics. Epidemics 2018;22:36–42.
  • Funk S, Camacho A, Kucharski AJ, et al. Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model. Epidemics 2018;22:56–61.
  • Tuite AR, Fisman DN. The IDEA model: a single equation approach to the Ebola forecasting challenge. Epidemics 2018;22:71–77.
  • Forecasting AJ. Ebola with a regression transmission model. Epidemics 2018;22:50–55.
  • Pell B, Kuang Y, Viboud C, et al. Using phenomenological models for forecasting the 2015 Ebola challenge. Epidemics 2016;11:22.
  • Gaffey RH, Viboud C. Application of the CDC EbolaResponse modeling tool to disease predictions. Epidemics 2018;22:22–28.
  • Venkatramanan S, Lewis B, Chen J, et al. Using data-driven agent-based models for forecasting emerging infectious diseases. Epidemics 2018;22:43–49.
  • Mangiarotti S, Peyre M, Huc M. A chaotic model for the epidemic of ebola virus disease in West Africa (2013–2016. Chaos: Interdiscip J Nonlinear Sci. 2016;26:11.
  • Abbate JL, Murall CL, Richner H, et al. Potential impact of sexual transmission on Ebola virus epidemiology: sierra Leone as a case study. PLoS Negl Trop Dis. 2016 05;10(5):1–15.
  • Lau MSY, Dalziel BD, Funk S, et al. Spatial and temporal dynamics of superspreading events in the 2014–2015 West Africa Ebola epidemic. Proc Nat Acad Sci. 2017;114(9):2337–2342.
  • Sofonea M, Aldakak L, Valdés Villarreal Boullosa L, et al. Can Ebola virus evolve to be less virulent in humans? J Evol Biol. 2017;12:31.
  • Marcus Getz W, Dougherty E. Discrete stochastic analogs of Erlang epidemic models. J Biol Dyn. 2018;01;12:16–38.
  • Smirnova A, deCamp L, Chowell G. Forecasting epidemics through nonparametric estimation of time-dependent transmission rates using the seir model. Bull Math Biol. 2017;81:1–23.
  • Burghardt K, Verzijl C, Huang J, et al. Testing modeling assumptions in the West Africa Ebola outbreak. Sci Rep. 2016;09:6.
  • Smirnova A, Chowell G. A primer on stable parameter estimation and forecasting in epidemiology by a problem-oriented regularized least squares algorithm. Infect Dis Model. 2017;2(2):268–275.
  • Agusto F. Mathematical model of Ebola transmission dynamics with relapse and reinfection. Math Biosci. 2017;283:48–59.
  • Nieddu GT, Billings L, Kaufman JH, et al. Extinction pathways and outbreak vulnerability in a stochastic Ebola model. J Royal Soc Interface. 2017;14:127.
  • Jones-Konneh T, Suda T, Sasaki H, et al. Agent-based modeling and simulation of nosocomial infection among healthcare workers during Ebola virus disease outbreak in Sierra Leone. Tohoku J Exp Med. 2018;245(08):231–238.
  • Funk S, Ciglenecki I, Tiffany A, et al. The impact of control strategies and behavioural changes on the elimination of Ebola from lofa county, Liberia. Philos Trans Royal Soc B. 2017;05:372.
  • Dure Ahmad M, Usman M, Khan A, et al. Optimal control analysis of Ebola disease with control strategies of quarantine and vaccination. Infect Diseases Poverty. 2016;12:5.
  • Montazeri Shahtori N, Ferdousi T, Scoglio C, et al. Quantifying the impact of early-stage contact tracing on controlling Ebola diffusion. Math Biosci Eng. 2018;15(10):1165–1180.
  • Camacho A, Eggo R, Goeyvaerts N, et al. Real-time dynamic modelling for the design of a cluster-randomized phase 3 Ebola vaccine trial in Sierra Leone. Vaccine 2016;12:35.
  • Diakite I, Mooring EQ, Velásquez GE, et al. Novel ordered stepped-wedge cluster trial designs for detecting Ebola vaccine efficacy using a spatially structured mathematical model. PLoS Negl Trop Dis. 2016 08;10(8):1–22.
  • Harling G, Wang R, Onnela JP, et al. Leveraging contact network structure in the design of cluster randomized trials. Clin Trials. 2016;10:14.
  • Zhu JM, Wang L, Liu JB. Eradication of Ebola based on dynamic programming. Comput Math Methods Med. 2016;2016.
  • Jiang S, Wang K, Li C, et al. Mathematical models for devising the optimal Ebola virus disease eradication. J Trans Med. 2017;15(06):1.
  • Merler S, Ajelli M, Fumanelli L, et al. Containing Ebola at the source with ring vaccination. PLoS Negl Trop Dis. 2016 11;10(11):1–11.
  • Kucharski A, Eggo R, Watson C, et al. Effectiveness of ring vaccination as control strategy for Ebola virus disease. Emerg Infect Diseases. 2016;01:22.
  • Bodine EN, Cook C, Shorten M. The potential impact of a prophylactic vaccine for Ebola in Sierra Leone. Math Biosci Eng. 2018;15(2):337–359.
  • Hitchings MDT, Grais RF, Lipsitch M. Using simulation to aid trial design: ring-vaccination trials. PLoS Negl Trop Dis. 2017. 03. 11(3):1–12.
  • Brettin A, Rossi–Goldthorpe R, Weishaar K, et al. Ebola could be eradicated through voluntary vaccination. Royal Soc Open Sci. 2018;5(01):1.
  • Huo X, Sun X, Lan K, et al. Treatment–donation-stockpile dynamics in Ebola convalescent blood transfusion therapy. J Theor Biol. 2016;392:53–61.
  • Ellner S, Gallant AR, Theiler J. Detecting nonlinearity and chaos in epidemic data. Epidemic Models: Struct Relation Data. 1995;229–247.
  • Noble C, Bagrow JP, Brockmann D. The role of caretakers in disease dynamics. J Stat Mech. 2013. 07. 152(4):787–798.
  • Camacho A, Kucharski A, Funk S, et al. Potential for large outbreaks of Ebola virus disease. Epidemics 2014;9:70–78.
  • Brockmann D. Human mobility, networks and disease dynamics on a global scale. Cham: Springer International Publishing; 2018. p. 375–396.
  • Siettos CI, Anastassopoulou C, Russo L, et al. Forecasting and control policy assessment for the Ebola virus disease (EVD) epidemic in Sierra Leone using small-world networked model simulations. BMJ Open. 2016;6:1.
  • Two MA. Ebola drugs show promise amid ongoing outbreak. Nature 2019;08. DOI:https://doi.org/10.1038/d41586-019-02442-6
  • FDA. ERVEBO prescribing information [https://www.fda.gov/media/133748/download]; 2020. Accessed 2020 06 02.
  • Chertow DS, Shekhtman L, Lurie Y, et al. Modeling challenges of ebola virus–host dynamics during infection and treatment. Viruses. 2020;12(1):106.
  • Jusu M, Glauser G, Seward J, et al. Rapid establishment of a cold chain capacity of −60° or colder for the STRIVE Ebola vaccine trial during the Ebola outbreak in Sierra Leone. J Infect Dis. 2018;217(05):S48–S55.
  • Capelle MA, Babich L, Van Deventer-troost JE, et al. Stability and suitability for storage and distribution of Ad26.ZEBOV/MVA-BN®-Filo heterologous prime-boost Ebola vaccine. Eur J Pharm Biopharm. 2018;129:215–221.
  • Peak C, Childs L, Grad Y, et al. Comparing nonpharmaceutical interventions for containing emerging epidemics. Proc Nat Acad Sci. 2017;114(15):4023–4028.
  • Huttner A, Agnandji ST, Combescure C, et al. Determinants of antibody persistence across doses and continents after single-dose rVSV-ZEBOV vaccination for Ebola virus disease: an observational cohort study. Lancet Infect Dis. 2018;18(7):738–748.
  • Kennedy SB, Bolay F, Kieh M, et al. Phase 2 placebo-controlled trial of two vaccines to prevent Ebola in Liberia. N Engl J Med. 2017;377(15):1438–1447.
  • Mutua G, Anzala O, Luhn K, et al. Safety and Immunogenicity of a 2-dose heterologous vaccine regimen with Ad26.ZEBOV and MVA-BN-Filo Ebola Vaccines: 12-month data from a phase 1 randomized clinical trial in Nairobi, Kenya. J Infect Dis. 2019;220(1):57–67.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.