245
Views
47
CrossRef citations to date
0
Altmetric
Research Articles

Finite element numerical technique for magneto-micropolar nanofluid flow filled with chemically reactive casson fluid between parallel plates subjected to rotatory system with electrical and Hall currents

ORCID Icon &
Pages 985-1004 | Received 04 Aug 2021, Accepted 27 Nov 2021, Published online: 05 Jan 2022

References

  • Casson M. A flow equation for pigment‐oil suspensions of the printing ink type. In: Mills CC,editor. Rheology of Disperse Systems. Oxford: Pergamon; 1959. p. 84‐104.
  • Eringen AC. Theory of micropolar fluids. J Math Anal Appl. 1966;16: pp.1–18.
  • Ali N, Zaman A, Sajid M, et al. Numerical Simulation of time-dependent non-Newtonian nano-pharmacodynamic transport phenomena in a tapered overlapping stenosed artery. Nano Sci Technol. 2018;9(3): pp. 247–282.
  • Ravi Kiran G, Shamshuddin MD, Balarama Krishna C, et al. Mathematical modelling of extraction of the underground fluids: application to peristaltic transportation through a vertical conduit occupied with porous material. IOP Conf Ser Mater Sci Eng. 2020;981: Article ID-22089. https://doi.org/10.1088/1757-899X/981/2/022089
  • Bergman TL, Viskanta R. Radiation heat transfer in manufacturing and materials processing in Radiative Transfer-I. Menguc MP, Eds. New York: Begell House Publishing; 1996. pp. 13–39.
  • Alizadeh M, Dogonchi AS, Ganji DD. Micropolar nanofluid flow and heat transfer between penetrable walls in the presence of thermal radiation and magnetic field. Case Stud Thermal Eng. 2018;12: pp.319–332.
  • Archana M, Gireesha BJ, Prasannakumar BC, et al. Influence of nonlinear thermal radiation on rotating flow of Casson nanofluid. Nonlin Eng. 2018;7(2): pp. 91–101.
  • Shaheen N, Ramzan M, Alaoui MK. Impact of Hall Current on a 3D Casson Nanofluid Flow Past a Rotating Deformable Disk with Variable Characteristics. Arabian J Sci Eng. 2021;46(12): pp. 12653–12666.
  • Shaheen N, Ramzan M, Alshehri A, et al. Soret-Dufour impact on a three-dimensional Casson nanofluid flow with dust particles and variable characteristics in a permeable media. Sci Rep. 2021;11(1): p. 14513 doi:10.1038/s41598-021-93797-2.
  • Hammad A, Saeed A, Eid MR, et al. Numerical treatment of MHD flow of Casson nanofluid via convectively heated non-linear extending surface with viscous dissipation and suction/injection effects. Comput Mater Continua. 2021;66(1): pp. 229–245.
  • Bilal M, Ramzan M, Mehmood Y, et al. An entropy optimization study of non-Darcian magnetohydrodynamic Williamson nanofluid with nonlinear thermal radiation over a stratified sheet. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. (SAGE). 2021;235: pp.1883–1894 doi:10.1177/09544089211027989
  • Liu C, Khan MU, Ramzan M, et al. Nonlinear radiative Maxwell nanofluid flow in a Darcy–Forchheimer permeable media over a stretching cylinder with chemical reaction and bioconvection. Sci Rep. 2021;11(1): p. 9391 doi:10.1038/s41598-021-88947-5.
  • Bashir S, Ramzan M, Chung JD, et al. Analyzing the impact of induced magnetic flux and Fourier’s and Fick’s theories on the Carreau-Yasuda nanofluid flow. Sci Rep. 2021;11(1): p. 9230 doi:10.1038/s41598-021-87831-6.
  • Ramzan M, Howari F, Chung JD, et al. Irreversibility minimization analysis of ferromagnetic Oldroyd-B nanofluid flow under the influence of a magnetic dipole. Sci Rep. 2021;11(1): p. 4810 doi:10.1038/s41598-021-84254-1.
  • Sajid T, Jamshed W, Shahzad F, et al. Micropolar fluid past a convectively heated surface embedded with nth order chemical reaction and heat source/sink. Phys Scr. 2021;96(10): p. 104010 doi:10.1088/1402-4896/ac0f3e.
  • Shahzad F, Jamshed W, Sajid T, et al. Heat transfer analysis of MHD rotating flow of Fe3O4 nanoparticles through a stretchable surface. Commun Theor Phys. 2021;73(7): p. 075004 doi:10.1088/1572-9494/abf8a1.
  • Bilal M, Hussain S, Sagheer M. Boundary layer flow of magneto-micropolar nanofluid flow with Hall and ion-slip effects using variable thermal diffusivity. Bull Polish Acad Sci Tech Sci. 2017;65(3): pp. 383–390.
  • Khan MI, Alzahrani F, Hobiny A, et al. Fully developed second order velocity slip Darcy-Forchheimer flow by a variable thicked surface of disk with entropy generation. Int J Heat Mass Transf. 2020;117(): p. 104778 doi:10.1016/j.icheatmasstransfer.2020.104778.
  • Khan MI. Transportation of hybrid nanoparticles in forced convective Darcy-Forchheimer flow by a rotating disk. Int J Heat Mass Transf. 2021;122(): p. 105177 doi:10.1016/j.icheatmasstransfer.2021.105177.
  • Jamshed W, Eid MR, Nasir NAAM, et al. Thermal examination of renewable solar energy in parabolic trough solar collector utilizing Maxwell nanofluid: a noble case study. Case Stud Thermal Eng. 2021;27: p. 101258.
  • Jamshed W, Eid MR, Nisar KS, et al. A numerical frame work of magnetically driven Powell-Eyring nanofluid using single phase model. Sci Rep. 2021;11(1): p. 16500.
  • Nour A, Dib A, Kezzar M, et al. Numerical treatment of squeezing unsteady nanofluid flow using optimized stochastic algorithm. Zeitschrift fur Naturforschung A. 2021;76(10): pp. 933–946.
  • Ibrahim W, Gadisa G. Finite element analysis of couple stress micropolar nanofluid flow by non‐Fourier’s law heat flux model past stretching surface. Heat Transfer Asian Res. 2019;48(8): pp. 3763–3789.
  • Ibrahim W, Gadisa G. Finite Element Method Solution of Boundary Layer Flow of Powell-Eyring Nanofluid over a Nonlinear Stretching Surface. J Appl Math. 2019;3472518: p. 2019.
  • Ibrahim W, Gamachu D. Finite element method solution of mixed convection flow of Williamson nanofluid past a radially stretching sheet. Heat Transfer Asian Res. 2019;49(2): pp. 800–822.
  • Shamshuddin MD, Anwar Beg O, Siva Reddy S, et al. Rotating unsteady multi-physico-chemical magneto-micropolar transport in porous media: galerkin finite element study. Comput Therm Sci. 2018;10(2): pp. 167–197.
  • Shamshuddin MD, Anwar Beg O, Kadir A. Finite element analysis of rotating oscillatory magneto-convective radiative micropolar thermo-solutal flow. Int J Fluid Mech Res. 2018;45(2): pp. 479–508.
  • Shamshuddin MD, Satya Narayana PV. Primary and Secondary flows on unsteady MHD free convective micropolar fluid flow past an inclined plate in a rotating system: a finite element analysis. Fluid Dynamics Mater Process. 2018;14: pp. 57–86.
  • Choi SUS. Enhancing Thermal Conductivity of Fluids with Nanoparticles. In: Da S, and Hp W, editors. Developments and Applications of Non-Newtonian Flows. Vol. 66. New York: ASME; 1995. pp. 99–105.
  • Buongiorno J. Convective transport in nanofluids. J Heat Transfer. 2006;128(3): pp. 240–250.
  • Shah Z, Islam S, Gul T, et al. The electrical MHD and Hall current impact on micropolar nanofluid flow between rotating parallel plates. Results Phys. 2018;9(1201–1214): pp. 1201–1214.
  • Shah Z, Islam S, Ayaz H, et al. Radiative heat and mass transfer analysis of micropolar nanofluid flow of Casson fluid between two rotating parallel plates with effect of Hall current. ASME J Heat Transfer. 2019;141(2): p. 022401.
  • Nadeem S, Masood S, Mehmood R, et al. Optimal and Numerical solutions for an MHD micropolar nanofluid between rotating horizontal parallel plates. Plos One. 2015;10(6): p. e0124016.
  • Turk O, Tezer-Sezgin M. FEM solution to natural convection flow of a micropolar nanofluid in the presence of a magnetic field. Meccanica. 2017;52(4–5): pp. 889–901.
  • Shamshuddin MD, Mabood F. A numerical Analysis of Binary chemical reaction and activation energy of thermo-solutal micropolar nanofluid flow through permeable stretching sheet: nanoparticle study. Phys Scr. 2021;96(7): p. 075206.
  • Shamshuddin MD, Mabood F, Anwar Beg O. Thermomagnetic reactive ethylene glycol-metallic nanofluid transport from a convectively heated porous surface with Ohmic dissipation, heat source, thermophoresis and Brownian motion effects. Int J Modell Simul. 2021; pp. 1–15. DOI:10.1080/02286203.2021.1977531
  • Fatunmbi EO, Salawu SO. Analysis of hydromagnetic micropolar nanofluid flow past a nonlinear stretchable sheet and entropy generation with Navier slips. Int J Modell Simul. 2021; pp. 1–11. DOI:10.1080/02286203.2021.1905490
  • Punith Gowda RJ, Mallikarjuna HB, Prasannakumara BC, et al. Dynamics of thermal Marangoni stagnation point flow in dusty Casson nanofluid. Int J Modell Simul. 2021. DOI:10.1080/02286203.2021.1957330
  • Wang CY. Stretching a surface in a rotating fluid. ZAMP. 1988;39(2): pp. 177–185.
  • Saini BS, Rajvanshi SC, Agrawal P. Squeezing flow between two parallel rotating naturally permeable plates. AMSE Simul Model. 2012;81(1–2): pp. 1–17 .
  • Mustafa M, Hayat T, Alsaedi A. Rotating flow of Maxwell fluid with variable thermal conductivity: an application to non -Fourier heat flux theory. Int J Heat Mass Transfer. 2017;106(): pp. 142–148.
  • Lv. Y-P, Gul H, Ramzan M, et al. Bioconvective Reiner-Rivlin nanofluid flow over a rotating disk with Cattaneo-Christov flow heat flux and entropy generation analysis. Sci Rep. 2021;11(1): p. 15859 doi:10.1038/s41598-021-95448-y.
  • Kumam P, Shah Z, Dawar A, et al. Entropy generation in MHD radiative flow of Caron Nano Tubes Casson nanofluid in rotating channels with heat source/sink. Math Prob Eng. 2019;2019: p. 9158093 doi:10.1155/2019/9158093.
  • Hayat T, Khan SA, Khan MI, et al. Optimizing the theoretical analysis of entropy generation in flow of second grade nanofluid. Phys Scr. 2019;94(8): p. 085001 doi:10.1088/1402-4896/ab0f65.
  • Khan MI, Qayyum S, Hayat T, et al. Entropy optimization in flow of Williamson nanofluid in the presence of chemical reaction and Joule heating. Int J Heat Mass Transfer. 2019;133(): pp. 959–967.
  • Khan MI, Qayyum S, Hayat T, et al. Investigation of Sisko fluid through entropy generation. J Mol Liq. 2018;257(): pp. 155–163.
  • Hayat T, Shah F, Khan MI, et al. Entropy analysis for comparative study of effective Prandtl number and without effective Prandtl number via γAl₂O₃-H₂O and γAl₂O₃-C₂H6O₂ nanoparticles. J Mol Liq. 2018;266(): pp. 814–823.
  • Hayat T, Aziz A, Muhammad T, et al. Effects of binary chemical reaction and Arrhenius activation energy in Darcy-Forchheimer three-dimensional flow of a nanofluid subject to rotating frame. J Thermal Anal Calorim. 2019;136(): pp. 1769–1779.
  • Mohyud-Din ST, Zaidi ZA, Khan U, et al. On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates. Aerosp Sci Technol. 2015;46(): pp. 514–522.
  • Awan SE, Raja MAZ, Gul F, et al. Numerical computing paradigm for investigation of micropolar nanofluid flow between parallel plates system with impact of electrical MHD and Hall current. Arabian J Sci Eng. 2021;46(): pp. 645–662.
  • Islam S, Khan A, Deebani W, et al. Influences of Hall current and radiation on MHD micropolar non-Newtonian hybrid nanofluid flow between two surfaces. AIP Adv. 2020;10(5): p. 055015 doi:10.1063/1.5145298.
  • Shamshuddin MD, Mishra SR, Anwar Beg O, et al. Numerical Study of Heat transfer and viscous flow in dual rotating extendable disk system with a non-Fourier heat flux model. Heat Transfer Asian Res. 2019;48(1): pp. 435–459.
  • Anwar Beg O, Uddin MJ, Beg TA, et al. Numerical study of self-similar natural convection mass transfer from a rotating cone in anisotropic porous media with Stefan blowing and Navier slip. Indian J Phys. 2020;94(6): pp. 863–877.
  • Hall EH. On a new action of the magnet on electric currents. Am J Math. 1879;2(3): pp. 287–292.
  • Sulochana P. Hall effects on unsteady MHD three-dimensional flow through a porous medium in a rotating parallel plate channel with the effect of the inclined magnetic field. Am J Comput Math. 2014;4(5): pp. 396–405.
  • Pop I, Soundalgekar VM. Effects of Hall currents on hydrodynamic flow near a porous plate. Acta Mech. 1974;20(3–4): pp. 315–318.
  • Ibrahim W, Makinde OD. Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition. J Aerospace Eng. 2016;29(2): 04015037-1-04015037-11.
  • Hiba B, Redouane F, Jamshed W, et al. A novel case study of thermal and streamline analysis in a grooved enclosure filled with (Ag-Mgo/water) hybrid nanofluid: galerkin FEM. Case Stud Thermal Eng. 2021;28: p. 101372 doi:10.1016/j.csite.2021.101372.
  • Eid MR, Al-Hossainy AF, Zoromba MS. FEM for Blood-Based SWCNTs flow through a circular cylinder in a porous medium with electromagnetic radiation. Commun Theor Phys. 2019;71(12): p. 1425 doi:10.1088/0253-6102/71/12/1425.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.