293
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Numerical treatment of multi-term time fractional nonlinear KdV equations with weakly singular solutions

&
Pages 23-33 | Received 05 Dec 2021, Accepted 14 Jan 2022, Published online: 30 Jan 2022

References

  • Boussinesq J. Essai sur la théorie des eaux courantes. Impr Nat. 1877; Tome XXIII, No 1.
  • Korteweg DJ, De Vries G. XLI.On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1895;39(240):422–443.
  • Alquran M, Jarrah A. Jacobi elliptic function solutions for a two-mode KdV equation. J King Saud Univ Sci. 2019;31(Part 4):485–489.
  • Hussain Z, Khan S, Ullah A, et al. Extension of optimal homotopy asymptotic method with use of Daftardar-Jeffery polynomials to Hirota-Satsuma coupled system of Korteweg-De Vries equations. Open Phys. 2020;18(Part 1):916–924.
  • Khater AH, Helal MA, El-Kalaawy OH. Bäcklund transformations: exact solutions for the KdV and the Calogero–Degasperis–Fokas mKdV equations. Math Meth Appl Sci. 1998;21(8):719–731.
  • Rasulov M, Coskun E. An efficient numerical method for solving KdV equation by a class of discontinuous functions. Appl Math Comput. 1999;102(Part 2–3):139–154.
  • Taha TR, Ablowitz MJ. Analytical and numerical aspects of certain nonlinear evolution equations, III. numerical, Korteweg-de Vries equation. J Comput Phys. 1984;55(Part 2):231–253.
  • Guo M, Fu C, Zhang Y, et al. Study of ion-acoustic solitary waves in a magnetized plasma using the three-dimensional time-space fractional schamel-KdV equation. Complexity. 2018;2018:1–17.
  • Kenig CE, Ponce G, Vega L. A bilinear estimate with applications to the KdV equation. J Amer Math Soc. 1996;9(Part 2):573–603.
  • Bhrawy AH, Doha EH, Ezz-Eldien SS, et al. A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations. Calcolo. 2016;53(Part 1):1–17.
  • Kaya D, Aassila M. An application for a generalized KdV equation by the decomposition method. Phys Lett A. 2002;299(Part 2–3):201–206.
  • Yang XJ, Machado JAT, Baleanu D, et al. On exact traveling-wave solutions for local fractional Korteweg-de Vries equation. Chaos. 2016;26(Part 8). DOI:10.1063/1.4960543
  • Chen H, Hu X, Ren J, et al. L1 scheme on graded mesh for the linearized time fractional KdV equation with initial singularity. Int J Mod Simulat Sci Comput. 2019;10(Part 1). DOI:10.1142/S179396231941006X
  • Santra S, Mohapatra J. Analysis of the L1 scheme for a time fractional parabolic-elliptic problem involving weak singularity. Math Meth Appl Sci. 2020;44(Part 2):1529–1541.
  • Santra S, Mohapatra J. Numerical analysis of Volterra integro-differential equations with Caputo fractional derivative. Iran J Sci Technol Trans A Sci. 2021;45(Part 5):1815–1824.
  • Santra S, Mohapatra J. A novel finite difference technique with error estimate for time fractional partial integro-differential equation of Volterra type. J Comput Appl Math. 2021. DOI:10.1016/j.cam.2021.113746
  • Chen H, Sun T. A Petrov–Galerkin spectral method for the linearized time fractional KdV equation. Int J Comput Math. 2018;95(Part 6–7):1292–1307.
  • Alquran M, Jaradat I, Momani S, et al. Chaotic and solitonic solutions for a new time fractional two-mode Korteweg-de Vries Equation. Romanian Rep Phys. 2020;72(Part 3):117.
  • Khader MM, Saad KM, Hammouch Z, et al. A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives. Appl Numer Math. 2021;161:137–146.
  • Xing Z, Wen L, Wang W. An efficient difference scheme for time-fractional KdV equation. Comp Appl Math. 2021;40. DOI:10.1007/s40314-021-01657-6.
  • Momani S. An explicit and numerical solutions of the fractional KdV equation. Math Comput Simul. 2005;70(2):110–118.
  • Momani S, Odibat Z, Alawneh A. Variational iteration method for solving the space- and time-fractional KdV equation. Numerical Methods for Partial Differential Equations. 2008;24(Part 1):262–271.
  • Ahmad I, Ahmad H, Inc M, et al. Solution of fractional-order Korteweg-de Vries and Burgers’ equations utilizing local meshless method. J Ocean Eng Sci. 2021. DOI:10.1016/j.joes.2021.08.014
  • Inc M, Haghighi MP, Akinlar MA, et al. New numerical solutions of fractional-order Korteweg-de Vries equation. Results Phys. 2020;19:103326.
  • Jafari H, Jassim HK, Baleanu D, et al. ON THE APPROXIMATE SOLUTIONS FOR A SYSTEM OF COUPLED KORTEWEG–DE VRIES EQUATIONS WITH LOCAL FRACTIONAL DERIVATIVE. Fractals. 2021;29(5):1–7.
  • Wang Q. Numerical solutions for fractional KdV–Burgers equation by Adomian decomposition method. Appl Math Comput. 2006;182(Part 2):1048–1055.
  • Wang KL, Wang KJ, He CH. Physical insight of local fractional calculus and its application to fractional Kdv–Burgers–Kuramoto equation. Fractals. 2019;27(Part 7). DOI:10.1142/S0218348X19501226
  • Xuan HN, Zhang D, Wang C. Families of non-travelling wave solutions to a generalized variable coefficient two-dimensional KdV equation using symbolic computation. Chaos Solitons Fractals. 2005;23(Part 1):171–174.
  • Ahmad H, Khan TA, Ahmad I, et al. A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations. Results Phys. 2020;19:103462.
  • Ahmad I, Khan MN, Inc M, et al. Numerical simulation of simulate an anomalous solute transport model via local meshless method. Alex Eng J. 2020;59(Part 4):2827–2838.
  • Rubbab Q, Nazeer M, Ahmad F, et al. Numerical simulation of advection–diffusion equation with Caputo-Fabrizio time fractional derivative in cylindrical domains: applications of pseudo-spectral collocation method. Alex Eng J. 2021;60(Part 1):1731–1738.
  • Ahmad I, Ahmad H, Thounthong P, et al. Solution of multi-term time-fractional PDE models arising in mathematical biology and physics by local meshless method. Symmetry. 2020;12(7):1195.
  • Ahmad I, Ahmad H, Inc M, et al. Application of local meshless method for the solution of two term time fractional-order multi-dimensional PDE arising in heat and mass transfer. Therm Sci. 2020;24:95–105.
  • Daftardar-Gejji V, Jafari H. Solving a multi-order fractional differential equation using Adomian decomposition. Appl Math Comput. 2007;189(Part 1):541–548.
  • Daftardar-Gejji V, Bhalekar S. Solving multi-term linear and non-linear diffusion-wave equations of fractional order by Adomian decomposition method. Appl Math Comput. 2008;202(Part 1):113–120.
  • Li JF, Ahmad I, Ahmad H, et al. Numerical solution of two-term time-fractional PDE models arising in mathematical physics using local meshless method. Open Phys. 2020;18(Part 1):1063–1072.
  • Wang F, Ahmad I, Ahmad H, et al. Meshless method based on RBFS for solving three-dimensional multi-term time fractional PDEs arising in engineering phenomenons. J King Saud Univ Sci. 2021;33(Part 8). DOI:10.1016/j.jksus.2021.101604
  • Hamoud AA, Ghadle KP. The reliable modified of Laplace Adomian decomposition method to solve nonlinear interval Volterra-Fredholm integral equations. Korean J Math. 2017;25(Part 3):323–334.
  • Hamoud AA, Ghadle KP. Modified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations. J Math Model. 2018;6(Part 1):91–104.
  • Diethelm K. The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Vol. 2004. Berlin: Springer-Verlag; 2010.
  • Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. In: Mathematics in science and engineering. Vol. 198. San Diego (CA): Academic Press, Inc; 1999.
  • Adomian G. A review of the decomposition method in applied mathematics. J Math Anal Appl. 1988;135(Part 2):501–544.
  • Cheng JF, Chu YM. Solution to the linear fractional differential equation using Adomian decomposition method. Math Probl Eng. 2011;2011. DOI:10.1155/2011/587068.
  • Panda A, Santra S, Mohapatra J. Adomian decomposition and homotopy perturbation method for the solution of time fractional partial integro-differential equations. J Appl Math Comput. 2021. DOI:10.1007/s12190-021-01613-x
  • Santra S, Panda A, Mohapatra J. A novel approach for solving multi-term time fractional Volterra-Fredholm partial integro-differential equations. J Appl Math Comput. 2021. DOI:10.1007/s12190-021-01675-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.