Publication Cover
Statistics
A Journal of Theoretical and Applied Statistics
Volume 53, 2019 - Issue 3
128
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Asymptotic properties of maximum likelihood estimator for the growth rate of a stable CIR process based on continuous time observations

, , & ORCID Icon
Pages 533-568 | Received 18 May 2018, Accepted 09 Dec 2018, Published online: 18 Feb 2019

References

  • Sato K-I. Lévy processes and infinitely divisible distributions. Cambridge: Cambridge University Press; 1999.
  • Fu Z, Li Z. Stochastic equations of non-negative processes with jumps. Stoch Process Appl. 2010;120:306–330. doi: 10.1016/j.spa.2009.11.005
  • Carr P, Wu L. Time-changed Lévy processes and option pricing. J Financ Econ. 2004;71:113–141. doi: 10.1016/S0304-405X(03)00171-5
  • Li Z, Ma C. Asymptotic properties of estimators in a stable Cox–Ingersoll–Ross model. Stoch Process Appl. 2015;125(8):3196–3233. doi: 10.1016/j.spa.2015.03.002
  • Jiao Y, Ma C, Scotti S. Alpha-CIR model with branching processes in sovereign interest rate modelling. Finance Stoch. 2017;21(3):789–813. doi: 10.1007/s00780-017-0333-7
  • Jiao Y, Ma C, Scotti S, et al. A branching process approach to power markets; 2018+. To appear in Energy Economics. doi:10.1016/j.eneco.2018.03.002.
  • Peng J. A stable Cox–Ingersoll–Ross model with restart. J Math Anal Appl. 2016;444:1185–1194. doi: 10.1016/j.jmaa.2016.07.010
  • Yang X. Maximum likelihood type estimation for discretely observed CIR model with small α-stable noises. Statist Probab Lett. 2017;120:18–27. doi: 10.1016/j.spl.2016.09.014
  • Ma R, Yang X. Small noise fluctuations of the CIR model driven by α-stable noises. Statist Probab Lett. 2014;94:1–11. doi: 10.1016/j.spl.2014.07.001
  • Li Z. Measure-valued branching Markov processes. Heidelberg: Springer-Verlag; 2011.
  • Jin P, Kremer J, Rüdiger B. Exponential ergodicity of an affine two-factor model based on the α-root process. Adv Appl Probab. 2017;49(4):1144–1169. doi: 10.1017/apr.2017.37
  • Keller-Ressel M, Affine processes – theory and applications in finance. PhD Thesis, Vienna University of Technology. p. 110; 2008.
  • Filipović D. A general characterization of one factor affine term structure models. Finance Stoch. 2001;5(3):389–412. doi: 10.1007/PL00013540
  • Barczy M, Ben Alaya M, Kebaier A, et al. Asymptotic properties of maximum likelihood estimator for the growth rate of a stable CIR process based on continuous time observations; 2017. Available from: ArXiv: http://arxiv.org/abs/1711.02140
  • Overbeck L. Estimation for continuous branching processes. Scand J Statist. 1998;25(1):111–126. doi: 10.1111/1467-9469.00092
  • Barczy M, Pap G. Asymptotic properties of maximum-likelihood estimators for Heston models based on continuous time observations. Statistics. 2016;50(2):389–417.
  • Dawson DA, Li Z. Skew convolution semigroups and affine Markov processes. Ann Probab. 2006;34(3):1103–1142. doi: 10.1214/009117905000000747
  • Jacod J, Shiryaev AN. Limit theorems for stochastic processes. 2nd ed. Berlin: Springer-Verlag; 2003.
  • Jacod J, Protter P. Discretization of processes. Heidelberg: Springer; 2012.
  • Filipović D, Mayerhofer E, Schneider P. Density approximations for multivariate affine jump-diffusion processes. J Econom. 2013;176(2):93–111. doi: 10.1016/j.jeconom.2012.12.003
  • Amann H. Ordinary differential equations. an introduction to nonlinear analysis. Berlin, New York: Walter de Gruyter; 1990.
  • Dudley RM. Real analysis and probability. Pacific Grove, California: Wadsworth and Brooks/Cole Advanced Books & Software; 1989.
  • Duffie D, Filipović D, Schachermayer W. Affine processes and applications in finance. Ann Appl Probab. 2003;13(3):984–1053. doi: 10.1214/aoap/1060202833
  • Barczy M, Li Z, Pap G. Stochastic differential equation with jumps for multi-type continuous state and continuous time branching processes with immigration. ALEA Latin Am J Probab Math Stat. 2015;12(1):129–169.
  • Polyanin AD, Zaitsev VF. Handbook of exact solutions for ordinary differential equations. Boca Raton London New York Washington, D.C: Chapman & Hall/CRC; 2003.
  • Billingsley P. Convergence of probability measures. 2nd ed. Inc., New York: John Wiley & Sons; 1999.
  • Sørensen M, Likelihood methods for diffusions with jumps. In: Prabhu NU, Basawa IV, editors. Statistical inference in stochastic processes. New York: Marcel Dekker; p. 67–105; 1991.
  • Luschgy H. Local asymptotic mixed normality for semimartingale experiments. Probab Theory Relat Fields. 1992;92:151–176. doi: 10.1007/BF01194919
  • Luschgy H. Asymptotic inference for semimartingale models with singular parameter points. J Statist Plann Inference. 1994;39:155–186. doi: 10.1016/0378-3758(94)90204-6
  • Arnol'd VI. Ordinary differential equations. Berlin: Springer-Verlag; 1992.
  • Küchler U, Sørensen M. Exponential families of stochastic processes. New York: Springer-Verlag; 1997.
  • Barczy M, Döring L, Li Z, et al. Stationarity and ergodicity for an affine two factor model. Adv Appl Probab. 2014;46(3):878–898. doi: 10.1239/aap/1409319564
  • Li Z, Continuous-state branching processes; 2012. Available from: ArXiv: http://arxiv.org/abs/1202.3223
  • Keller-Ressel M. Moment explosions and long-term behavior of affine stochastic volatility models. Math Finance. 2011;21(1):73–98. doi: 10.1111/j.1467-9965.2010.00423.x
  • Bhattacharya RN. On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete. 1982;60:185–201. doi: 10.1007/BF00531822
  • Jacod J, Mémin J. Caractéristiques locales et conditions de continuité absolue pour les semi-martingales. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete. 1976;35:1–37. doi: 10.1007/BF00532597
  • Barczy M, Ben Alaya M, Kebaier A, et al. Asymptotic behavior of maximum likelihood estimators for a jump-type Heston model. J Statist Plann Inference. 2019;198:139–164. doi: 10.1016/j.jspi.2018.02.002
  • Liptser RS, Shiryaev AN. Statistics of random processes II. applications. 2nd ed. Berlin, Heidelberg: Springer-Verlag; 2001.
  • van Zanten H. A multivariate central limit theorem for continuous local martingales. Statist Probab Lett. 2000;50(3):229–235. doi: 10.1016/S0167-7152(00)00108-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.