Publication Cover
Optimization
A Journal of Mathematical Programming and Operations Research
Volume 64, 2015 - Issue 3
104
Views
3
CrossRef citations to date
0
Altmetric
Articles

Conjugacies adapted to lower semicontinuous functions

Pages 473-494 | Received 03 Mar 2012, Accepted 10 Apr 2013, Published online: 04 Dec 2013

References

  • Singer I. Abstract convex analysis. New York: J. Wiley; 1997.
  • Moreau J-J. Inf-convolution, sous-additivité, convexité des fonctions numériques. J. Math. Pures Appl. 1970;49:109–154.
  • Balder EJ. An extension of duality-stability relations to non-convex optimization problems. SIAM J. Control Optim. 1977;15:329–343.
  • Martínez-Legaz J-E. Generalized conjugacy and related topics. In: Cambini A, Castagnoli E, Martein L, Mazzoleni P, Schaible S, editors. Generalized convexity and fractional programming with economic applications. Lecture notes in Economics and Mathematical Systems 345. Berlin: Springer Verlag; 1990. p. 168–197.
  • Martínez-Legaz J-E. Fenchel duality and related properties in generalized conjugacy theory. Southeast Asian Bull. Math. 1995;19:99–106.
  • Penot J-P. What is quasiconvex analysis? Optimization. 2000;47:35–110.
  • Penot J-P. Unilateral analysis and duality. In: Audet Ch, Hansen P, Savard G. editors. GERAD, essays and surveys in global optimization. New York: Springer; 2005. p. 1–37.
  • Penot J-P. Image approach and subdifferentials of integral functionals. Optimization. 2010;59:1–19.
  • Penot J-P. Are dualities appropriate for duality theories in optimization? J. Global Optim. 2010;47:503–525.
  • Penot J-P, Volle M. On quasi-convex duality. Math. Oper. Res. 1990;15:597–625.
  • Rockafellar RT, Wets RJB. Variational analysis. Berlin: Springer; 1998.
  • Flores-Bazán F. On a notion of subdifferentiability for non-convex functions. Optimization. 1995;33:1–8.
  • Flores-Bazán F, Martínez-Legaz J-E. Simplified global optimality conditions in generalized conjugacy theory. In: Crouzeix J-P, Martínez-Legaz J-E, Volle M, editors. Generalized convexity, generalized monotonicity: recent results. Dordrecht: Kluwer; 1998. p. 305–329.
  • Singer I. Some relations between dualities, polarities, couplings and conjugations. J. Math. Anal. Appl. 1986;115:1–22.
  • Pallaschke D, Rolewicz S. Foundations of mathematical optimization: convex analysis without linearity. Mathematics and its Applications 388. Dordrecht: Kluwer; 1997.
  • Cotrina J, Karas EW, Ribeiro AA, Sosa W, Yuan JY. Fenchel–Moreau conjugation for lower semi-continuous functions. Optimization. 2011;60:1045–1057.
  • Oettli W, Schläger D. Conjugate functions for convex and nonconvex duality. J. Global Optim. 1998;13:337–347.
  • Penot J-P, Volle M. Dualité de Fenchel et quasi-convexité. C.R. Acad. Sci. Paris, Sér. I Math. 1987;304:371–374.
  • Rolewicz S. Duality and convex analysis in the absence of linear structure. Math. Japonica. 1996;44:165–182.
  • Dolecki S, Kurcyusz S. On Φ-convexity in extremal problems. SIAM J. Control Optim. 1978;16:277–300.
  • Rubinov AM. Abstract convexity and global optimization. Dordrecht: Kluwer; 2000.
  • Asplund E, Rockafellar RT. Gradients of convex functions. Trans. Am. Math. Soc. 1969;139:443–467.
  • Azé D, Penot J-P. Uniformly convex and uniformly smooth convex functions. Ann. Fac. Sci. Toulouse. 1995;4:705–730.
  • Zălinescu C. Convex analysis in general vector spaces. Singapore: World Scientific; 2002.
  • Zălinescu C. On uniformly convex functions. J. Math. Anal. Appl. 1983;95:344–374.
  • Penot J-P. Rotundity, smoothness and duality. Control Cybernet. 2003;32:711–733.
  • Penot J-P. Augmented Lagrangians, duality and growth conditions. J. Nonlinear Convex Anal. 2002;3:283–302.
  • Bourbaki N. Elements of mathematics, general topology. Chapters 5–10. Berlin: Springer-Verlag; 1989. Translated from the French: Topologie Générale, Utilisation des Nombres Réels en Topologie Générale. chapitre 9. Paris: Hermann; 1958.
  • Kelley JL. General topology. Princeton (NJ): Van Nostrand; 1955.
  • Rockafellar RT. Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM J. Control Optim. 1974;12:268–285.
  • Castaing C, Valadier M. Convex analysis and measurable multifunctions. Lecture Notes in Mathematics 580. Berlin: Springer-Verlag; 1977.
  • Fougères A. Propriétés géométriques et minoration des intégrandes convexes normales coercives C. R.Acad. Sci. Paris, Ser. A-B. 1977;284:A873–A876.
  • Fougères A. Coercivité, convexité, relaxation: une extension naturelle du théorème d’inf-équicontinuité de J.-J. Moreau. C. R. Acad. Sci. Paris, Sér. A-B. 1977;284:A711–A713.
  • Asplund E. Fréchet differentiability of convex functions. Acta Math. 1968;121:31–47.
  • Brønsted A. Conjugate convex functions in topological vector spaces. Mat.-Fys. Medd. Danske Vid. Selsk. 1964;34:1–27.
  • Rolewicz S. Convex analysis without linearity. Control Cybernet. 1994;23:247–256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.