Publication Cover
Optimization
A Journal of Mathematical Programming and Operations Research
Volume 65, 2016 - Issue 5
504
Views
22
CrossRef citations to date
0
Altmetric
Articles

Weak and strong stationarity in generalized bilevel programming and bilevel optimal control

&
Pages 907-935 | Received 21 Jul 2015, Accepted 22 Oct 2015, Published online: 31 Dec 2015

References

  • Luo ZQ, Pang JS, Ralph D. Mathematical programs with equilibrium constraints. Cambridge: Cambridge University Press; 1996.
  • Scheel H, Scholtes S. Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 2000;25:1–22.
  • Hoheisel T, Kanzow C, Schwartz A. Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Math. Program. 2013;137:257–288.
  • Outrata J, Kočvara M, Zowe J. Nonsmooth approach to optimization problems with equilibrium constraints. Dordrecht: Kluwer Academic Publishers; 1998.
  • Ye JJ. Optimality conditions for optimization problems with complementarity constraints. SIAM J. Optim. 1999;9:374–387.
  • Wachsmuth G. Mathematical programs with complementarity constraints in Banach spaces. J. Optim. Theory Appl. 2014:1–28. Available from: http://dx.doi.org/10.1007/s10957-014-0695-3.
  • Bonnans JF, Shapiro A. Perturbation analysis of optimization problems. New York (NY): Springer; 2000.
  • Zowe J, Kurcyusz S. Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 1979;5:49–62.
  • Ye JJ. Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 2005;307:350–369.
  • Flegel M, Kanzow C. A direct proof for M-stationarity under MPEC-GCQ for mathematical programs with equilibrium constraints. In: Dempe S, Kalashnikov V, editors. Optimization with multivalued mappings. Vol. 2, Springer optimization and its applications, New York (NY): Springer; 2006. p. 111–122.
  • Jahn J. Vector optimization: theory, applications, and extensions. Berlin: Springer; 2004.
  • Dempe S, Dutta J. Is bilevel programming a special case of a mathematical program with complementarity constraints? Math. Program. Ser. A. 2010;131:37–48.
  • Dempe S. Foundations of bilevel programming. Dordrecht: Kluwer Academic Publishers; 2002.
  • Dempe S, Zemkoho AB. On the Karush–Kuhn–Tucker reformulation of the bilevel optimization problem. Nonlinear Anal.: Theory, Methods Appl. 2012;75:1202–1218.
  • Zemkoho AB. Bilevel programming: reformulations, regularity, and stationarity [dissertation]. Freiberg: Technical University Bergakademie Freiberg, 2012.
  • Albrecht S, Leibold M, Ulbrich M. A bilevel optimization approach to obtain optimal cost functions for human arm movements. Control Optim. 2012;2:105–127.
  • Fisch F, Lenz J, Holzapfel F, Sachs G. On the solution of bilevel optimal control problems to increase the fairness of air race. J. Guidance Control Dyn. 2012;35:1292–1298.
  • Hatz K. Efficient numerical methods for hierarchical dynamic optimization with application to cerebral Palsy Gait modeling [dissertation]. Heidelberg: University of Heidelberg, 2014.
  • Hatz K, Schlöder JP, Bock HG. Estimating parameters in optimal control problems. SIAM J. Sci. Comput. 2012;34:A1707–A1728.
  • Knauer M, Büskens C, Lasch P. Real-time solution of bi-level optimal control problems. PAMM. 2005;5:749–750.
  • Knauer M, Büskens C. Hybrid solution methods for bilevel optimal control problems with time dependent coupling. In: Diehl M, Glineur F, Jarlebring E, Michiels W, editors. Recent advances in optimization and its applications in engineering. Berlin: Springer; 2010. p. 237–246.
  • Mombaur K, Truong A, Laumond JP. From human to humanoid locomotion—an inverse optimal control approach. Auton. Robots. 2010;28:369–383.
  • Benita F, Mehlitz P. Bilevel optimal control with final-state-dependent finite-dimensional lower level. Freiberg: TU Bergakademie Freiberg; Forthcoming 2014.
  • Benita F, Dempe S, Mehlitz P. Bilevel optimal control problems with pure state constraints and finite-dimensional lower level. Freiberg: TU Bergakademie Freiberg; Forthcoming 2014.
  • Bonnel H, Morgan J. Semivectorial bilevel convex optimal control problems: existence results. SIAM J. Control Optim. 2012;50:3224–3241.
  • Bonnel H, Morgan J. Optimality conditions for semivectorial bilevel convex optimal control problems, in Computational and analytical mathematics. In: Bailey DH, Bauschke HH, Borwein P, Garvan F, Théra M, Vanderwerff JD, Wolkowicz H, editors. Springer proceedings in mathematics and statistics. Vol. 50, New York (NY): Springer; 2013. p. 45–78.
  • Ye JJ. Optimal strategies for bilevel dynamic problems. SIAM J. Optim. Control. 1997;35:512–531.
  • Chieu NH, Kien BT, Toan NT. Further results on subgradients of the value function to a parametric optimal control problem. J. Optim. Theory Appl. 2011:1–17. Available from: http://dx.doi.org/10.1007/s10957-011-9933-0.
  • Kirsch A, Warth W, Werner J. Notwendige Optimalitätsbedingungen und ihre Anwendung. Vol. 152, Lecture Notes in Economics and Mathematical Systems. Berlin: Springer; 1978.
  • Barnett S, Cameron RG. Introduction to mathematical control theory. New York (NY): Oxford University Press; 1990.
  • Jahn J. Introduction to the theory of nonlinear optimization. Berlin: Springer; 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.