Publication Cover
Optimization
A Journal of Mathematical Programming and Operations Research
Latest Articles
180
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An inertial proximal splitting method with applications

, , &
Received 20 Jul 2022, Accepted 15 Apr 2023, Published online: 14 Jul 2023

References

  • Fan JQ, Li RZ. Variable selection via nonconcave penalized likelihood and its oracle properties. J Amer Stat Assoc. 2001;96:1348–1360. doi: 10.1198/016214501753382273
  • Gao X, Cai XJ, Han DR. A Gauss-Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems. J Glob Optim. 2020;76:863–887. doi: 10.1007/s10898-019-00819-5
  • Yang LF, Yang Y, Chen G, et al. Distributionally robust framework and its approximations based on vector and region split for self-scheduling of generation companies. IEEE Trans Ind Inform. 2022;18(8):5231–5241. doi: 10.1109/TII.2021.3125964
  • Yang LF, Luo JY, Xu Y, et al. A distributed dual consensus ADMM based on partition for DC-DOPF with carbon emission trading. IEEE Trans Ind Inform. 2020;16(3):1858–1872. doi: 10.1109/TII.9424
  • Glowinski R, Marroco A. Sur l'approximation, par elements finis d'ordre, et la resolution, par penalisation-dualite, d'une classe de problemes de Dirichlet non lineaires. J Equine Vet Sci. 1975;9:41–76. doi: 10.1051/M2AN/197509R200411
  • Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning with the alternating direction method of multipliers. Found Trends Mach Learn. 2011;3:1–122. doi: 10.1561/2200000016
  • Han DR. A survey on some recent developments of alternating direction method of multipliers. J Oper Res Soc China. 2022;10:1–52.doi: 10.1016/j.rser.2021.111687
  • Chen CH, He BS, Ye YY, et al. The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math Program. 2016;155(1–2):57–79. doi: 10.1007/s10107-014-0826-5
  • Chen CH. Some notes on the divergence example for multi-block alternating direction method of multipliers (in Chinese). Oper Res Trans. 2019;23(3):135–140. doi: 10.15960/j.cnki.issn.1007-6093.2019.03.010
  • Shen Y, Gao QM, Yin X. A multi-parameter parallel ADMM for multi-block linearly constrained separable convex optimization. Appl Numer Math. 2022;171:369–388. doi: 10.1016/j.apnum.2021.09.011
  • Han DR, Yuan XM. Local linear convergence of the alternating direction method of multipliers for quadratic programs. SIAM J Numer Anal. 2013;51:3446–3457. doi: 10.1137/120886753
  • Yang WH, Han DR. Linear convergence of alternating direction method of multipliers for a class of convex optimization problems. SIAM J Numer Anal. 2016;54:625–640. doi: 10.1137/140974237
  • Chang XK, Liu SY, Zhao PJ, et al. Convergent prediction-correction-based ADMM for multi-block separable convex programming. J Comput Appl Math. 2018;335:270–288. doi: 10.1016/j.cam.2017.11.033
  • Zhang JJ, Nagy JG. An effective alternating direction method of multipliers for color image restoration. Appl Numer Math. 2021;164:43–56. doi: 10.1016/j.apnum.2020.07.008
  • Bai JC, Chang XK, Li JC, et al. Convergence revisit on generalized symmetric ADMM. Optimization. 2021;70:149–168. doi: 10.1080/02331934.2019.1704754
  • He HJ, Hou LS, Xu HK. A partially isochronous splitting algorithm for three-block separable convex minimization problems. Adv Comput Math. 2018;44:1091–1115. doi: 10.1007/s10444-017-9574-4
  • He HJ, Han DR. A distributed Douglas–Rachford splitting method for multi-block convex minimization problems. Adv Comput Math. 2016;42:27–53. doi: 10.1007/s10444-015-9408-1
  • Bai JC, Hager W, Zhang HC. An inexact accelerated stochastic ADMM for separable convex optimization. Comput Optim Appl. 2022;81:479–518. doi: 10.1007/s10589-021-00338-8
  • Hou LS, He HJ, Yang JF. A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA. Comput Optim Appl. 2016;63:273–303. doi: 10.1007/s10589-015-9770-4
  • Chen JW, Wang YY, He HJ, et al. Convergence analysis of positive-indefinite proximal ADMM with a Glowinski's relaxation factor. Numer Algorithms. 2020;83:1415–1440. doi: 10.1007/s11075-019-00731-9
  • Chang XK, Chen L, Liu SY. A three-operator splitting perspective of a three-block ADMM for convex quadratic semidefinite programming and beyond. Asia Pac J Oper Res. 2020;37(04):2040009. doi: 10.1142/S0217595920400096
  • He HJ, Hou LS, Xu HK. Correction to: A partially isochronous splitting algorithm for three-block separable convex minimization problems. Adv Comput Math. 2018;44:1117–1118. doi: 10.1007/s10444-018-9591-y
  • Bai JC, Han DR, Sun H, et al. Convergence on a symmetric accelerated stochastic ADMM with larger stepsizes. CSIAM Appl Math. 2022;3:448–479. doi: 10.4208/csiam-am
  • Bai JC, Li JC, Xu FM, et al. Generalized symmetric ADMM for separable convex optimization. Comput Optim Appl. 2018;70:129–170. doi: 10.1007/s10589-017-9971-0
  • Chao MT, Cheng CZ, Zhang HB. A linearized alternating direction method of multipliers with substitution procedure. Asia Pac J Oper Res. 2015;32(3):1550011. doi: 10.1142/S0217595915500116
  • Ma YX, Bai JC, Sun H. An inexact ADMM with proximal-indefinite term and larger stepsize. Appl Numer Math. 2023;184:542–566. doi: 10.1016/j.apnum.2022.10.015
  • Chao MT, Cheng CZ, Liang DY. A proximal block minimization method of multipliers with a substitution procedure. Optim Methods Softw. 2015;30(4):825–842. doi: 10.1080/10556788.2014.992432
  • Li GY, Pong TK. Global convergence of splitting methods for nonconvex composite optimization. SIAM J Optim. 2015;25:2434–2460. doi: 10.1137/140998135
  • Hong MY, Luo ZQ, Razaviyayn M. Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J Optim. 2016;26:337–364. doi: 10.1137/140990309
  • Wang FH, Cao WF, Xu ZB. Convergence of multi-block Bregman ADMM for nonconvex composite problems. Sci China Inform Sci. 2018;61:101–121.doi: 10.1007/s11432-017-9367-6
  • Guo K, Han DR, Wu TT. Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints. Int J Comput Math. 2017;94:1653–1669. doi: 10.1080/00207160.2016.1227432
  • Liu PJ, Shao H, Lei Y, et al. Convergence analysis of an ALF-based nonconvex splitting algorithm with SQP structure. J Ind Manag Optim. 2022;19(7):5230–5248. doi: 10.3934/jimo.2022170
  • Liu PJ, Jian JB, Ma GD, et al. A linear approximation Bregman-type Peaceman–Rachford splitting method for nonconvex nonseparable optimization. Acta Math Sin. 2023;66(1):75–94. doi: 10.12386/A20210081
  • Jian JB, Liu PJ, Jiang XZ. A partially symmetric regularized alternating direction method of multipliers for nonconvex multi-block optimization. Acta Math Sin. 2021;64:1005–1026. doi: 10.12386/A2021sxxb0084
  • Liu PJ, Jian JB, He B, et al. Convergence of Bregman Peaceman–Rachford splitting method for nonconvex nonseparable optimization. J Oper Res Soc China. 2022. doi: 10.1007/s40305-022-00411-x
  • Ochs P, Chen YJ, Brox T, et al. iPiano: inertial proximal algorithm for nonconvex optimization. SIAM J Imaging Sci. 2014;7:1388–1419. doi: 10.1137/130942954
  • Ochs P, Brox T, Pock T. iPiasco: inertial proximal algorithm for strongly convex optimization. J Math Imaging Vis. 2015;53:171–181. doi: 10.1007/s10851-015-0565-0
  • Zavriev S, Kostyuk F. Heavy-ball method in nonconvex optimization problems. Comput Math Model. 1993;4:336–341. doi: 10.1007/BF01128757
  • Bot RI, Csetnek ER, Hendrich C. Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl Math Comput. 2015;256:472–487.doi: 10.1016/j.amc.2015.01.017
  • Wu ZM, Li CS, Li M, et al. Inertial proximal gradient methods with Bregman regularization for a class of nonconvex optimization problems. J Glob Optim. 2021;79:617–644. doi: 10.1007/s10898-020-00943-7
  • Wu ZM, Li M. General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems. Comput Optim Appl. 2019;73:129–158. doi: 10.1007/s10589-019-00073-1
  • Chao MT, Nong FF, Zhao MY. An inertial alternating minimization with Bregman distance for a class of nonconvex and nonsmooth problems. J Appl Math Comput. 2022;69:1559–1581. doi: 10.1007/s12190-022-01799-8
  • Chen CH, Chan RH, Ma SQ, et al. Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J Imaging Sci. 2015;8:2239–2267. doi: 10.1137/15100463X
  • Xu JW, Chao MT. An inertial Bregman generalized alternating direction method of multipliers for nonconvex optimization. J Appl Math Comput. 2022;68(3):1–27. doi: 10.1007/s12190-021-01590-1
  • Chao MT, Zhang Y, Jian JB. An inertial proximal alternating direction method of multipliers for nonconvex optimization. Int J Comput Math. 2021;98(6):1199–1217. doi: 10.1080/00207160.2020.1812585
  • Wang XQ, Shao H, Liu PJ, et al. An inertial proximal partially symmetric ADMM-based algorithm for linearly constrained multi-block nonconvex optimization problems with applications. J Comput Appl Math. 2023;420:114821.doi: 10.1016/j.cam.2022.114821
  • Jia ZH, Gao X, Cai XJ, et al. Local linear convergence of the alternating direction method of multipliers for nonconvex separable optimization problems. J Optim Theory Appl. 2021;188:1–25. doi: 10.1007/s10957-020-01782-y
  • Attouch H, Bolte J, Redont P, et al. Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math Oper Res. 2010;35:438–457. doi: 10.1287/moor.1100.0449
  • Rockafellar R, Wets R. Variational analysis. Berlin: Springer; 1998.
  • Nesterov Y. Introductory lectures on convex optimization: a basic course. Boston: Springer Science & Business Media; 2013.
  • Bolte J, Sabach S, Teboulle M. Proximal alternating linearized minimization or nonconvex and nonsmooth problems. Math Program. 2014;146:459–494. doi: 10.1007/s10107-013-0701-9
  • Goncalves MLN, Melo JG, Monteiro RDC. Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems. Pac J Optim. 2019;15(3):379–398. http://www.yokohamapublishers.jp/online2/pjov15-3.html
  • Guo K, Han DR, Wang DZW, et al. Convergence of ADMM for multi-block nonconvex separable optimization models. Front Math China. 2017;12:139–1162. doi: 10.1007/s11464-017-0631-6
  • Yashitini M. Multi-block nonconvex nonsmooth proximal ADMM: convergence and rates under Kurdyka–Łojasiewicz property. J Optim Theory App. 2021;190:966–998. doi: 10.1007/s10957-021-01919-7
  • Fan JQ. Comments on ‘Wavelets in statistics: a review’ by A. Antoniadis J Italian Stat Soc. 1997;6:131–138. doi: 10.1007/BF03178906
  • Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D. 1992;60:259–268. doi: 10.1016/0167-2789(92)90242-F
  • Xu ZB, Chang XY, Xu FM, et al. L1/2 regularization: a thresholding representation theory and a fast solver. IEEE Trans Neural Netw Learn. 2012;23:1013–1027. doi: 10.1109/TNNLS.2012.2197412
  • Behmardi B, Raich R. On provable exact low-rank recovery in topic models. 2011 IEEE Stat Signal Process Workshop (SSP). 2011;2011:265–268. doi: 10.1109/SSP.2011.5967677
  • Xu H, Caramanis C, Mannor S. Outlier-robust PCA: the high-dimensional case. IEEE Trans Inf Theory. 2013;59:546–572. doi: 10.1109/TIT.2012.2212415
  • Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math. 2003;57:1413–1457. doi: 10.1002/(ISSN)1097-0312

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.