Publication Cover
Optimization
A Journal of Mathematical Programming and Operations Research
Latest Articles
125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Convergence of solutions to nonlinear nonconvex optimal control problems

, &
Received 22 Sep 2022, Accepted 09 Jul 2023, Published online: 26 Jul 2023

References

  • Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, et al. Mathematical theory of optimal processes. New York: Wiley; 1987.
  • Sussmann HJ, Willems JC. 300 years of optimal control: from the brachystochrone to the maximum principle. IEEE Control Syst Mag. 1997;17(3):32–44. doi: 10.1109/37.588098
  • Bryson AE. Optimal control-1950 to 1985. IEEE Control Syst Mag. 1996;16(3):26–33. doi: 10.1109/37.506395
  • Sethi SP, Thompson GL. Applications to management science and economics. New York: Springer; 2000.
  • Geering HP. Optimal control with engineering applications. Berlin: Springer; 2007.
  • Lenhart S, Workman JT. Optimal control applied to biological models. Boca Raton: Chapman and Hall/CRC; 2007.
  • Kien BT, Toan NT, Wong MM, et al. Lower semicontinuity of the solution set to a parametric optimal control problem. SIAM J Control Optim. 2012;50(5):2889–2906. doi: 10.1137/110842491
  • Santos ILD, Silva GN. Filippov's selection theorem and the existence of solutions for optimal control problems in time scales. Comput Appl Math. 2014;33(1):223–241. doi: 10.1007/s40314-013-0057-z
  • Hermant A. Stability analysis of optimal control problems with a second-order state constraint. SIAM J Optim. 2009;20(1):104–129. doi: 10.1137/070707993
  • Zhao J. The lower semicontinuity of optimal solution sets. J Math Anal Appl. 1997;207(1):240–254. doi: 10.1006/jmaa.1997.5288
  • Zaslavski AJ. Generic well-posedness of optimal control problems without convexity assumptions. SIAM J Control Optim. 2000;39(1):250–280. doi: 10.1137/S0363012998345391
  • Anh LQ, Tai VT, Tam TN. On Hölder calmness and Hölder well-posedness for optimal control problems. Optimization. 2022;71(10):3007–3040. doi: 10.1080/02331934.2021.1892676
  • Körkel S, Kostina E, Bock HG, et al. Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes. Optim Meth Soft. 2004;19(3-4):327–338. doi: 10.1080/10556780410001683078
  • Bednarczuk E. Stability analysis for parametric vector optimization problems. Dissertationes Math. 2007;442:1–126. doi: 10.4064/dm442-0-1
  • Anh LQ, Khanh PQ, Tam TN. On Hölder continuity of solution maps of parametric primal and dual Ky Fan inequalities. TOP. 2015;23(1):151–167. doi: 10.1007/s11750-014-0332-1
  • Anh LQ, Duy TQ, Hien DV. Stability for parametric vector quasi-equilibrium problems with variable cones. Numer Funct Anal Optim. 2019;40(4):461–483. doi: 10.1080/01630563.2018.1556688
  • Luc DT, Lucchetti R, Maliverti C. Convergence of the efficient sets. Set-Valued Anal. 1994;2(1):207–218. doi: 10.1007/BF01027102
  • Lalitha CS, Chatterjee P. Stability and scalarization of weak efficient, efficient and henig proper efficient sets using generalized quasiconvexities. J Optim Theory Appl. 2012;155(3):941–961. doi: 10.1007/s10957-012-0106-6
  • Li XB, Lin Z, Peng ZY. Convergence for vector optimization problems with variable ordering structure. Optimization. 2016;65(8):1615–1627. doi: 10.1080/02331934.2016.1157879
  • Gutiérrez C, Miglierina E, Molho E, et al. Convergence of solutions of a set optimization problem in the image space. J Optim Theory Appl. 2016;170(2):358–371. doi: 10.1007/s10957-016-0942-x
  • Anh LQ, Duy TQ, Hien DV, et al. Convergence of solutions to set optimization problems with the set less order relation. J Optim Theory Appl. 2020;185(2):416–432. doi: 10.1007/s10957-020-01657-2
  • Anh LQ, Duy TQ, Hien DV. Stability of efficient solutions to set optimization problems. J Global Optim. 2020;78(3):563–580. doi: 10.1007/s10898-020-00932-w
  • Durea M. On the existence and stability of approximate solutions of perturbed vector equilibrium problems. J Math Anal Appl. 2007;333(2):1165–1179. doi: 10.1016/j.jmaa.2006.12.009
  • Anh LQ, Bantaojai T, Hung NV, et al. Painlevé-Kuratowski convergences of the solution sets for generalized vector quasi-equilibrium problems. Comput Appl Math. 2018;37(3):3832–3845. doi: 10.1007/s40314-017-0548-4
  • Anh LQ, Khanh PQ, Van DTM. On well-posedness for perturbed quasi-equilibrium and quasi-optimization problems. Numer Funct Anal Optim. 2021;42(5):583–607. doi: 10.1080/01630563.2021.1901116
  • Cruz JYB, Iusem AN. Convergence of direct methods for paramonotone variational inequalities. Comput Optim Appl. 2010;46(2):247–263. doi: 10.1007/s10589-009-9246-5
  • Chipot M, Guesmia S, Sengouga A. Anisotropic singular perturbations of variational inequalities. Calc Var Partial Differ Equ. 2018;57(1):1–29. doi: 10.1007/s00526-017-1286-6
  • Alphonse A, Hintermüller M, Rautenberg CN. Stability of the solution set of quasi-variational inequalities and optimal control. SIAM J Control Optim. 2020;58(6):3508–3532. doi: 10.1137/19M1250327
  • Buttazzo G, Maso GD. γ-convergence and optimal control problems. J Optim Theory Appl. 1982;38(3):385–407. doi: 10.1007/BF00935345
  • Papageorgiou NS. A convergence result for a sequence of distributed-parameter optimal control problems. J Optim Theory Appl. 1991;68(2):305–320. doi: 10.1007/BF00941570
  • Yu J, Liu ZX, Peng DT, et al. Existence and stability analysis of optimal control. Optimal Control Appl Methods. 2014;35(6):721–729. doi: 10.1002/oca.v35.6
  • Casas E, Kogut PI, Leugering G. Approximation of optimal control problems in the coefficient for the p-laplace equation. i. convergence result.. SIAM J Control Optim. 2016;54(3):1406–1422. doi: 10.1137/15M1028108
  • Showalter RE. Monotone operators in banach space and nonlinear partial differential equations. Providence: American Mathematical Society; 2013.
  • Cesari L. Optimization-theory and applications: problems with ordinary differential equations. New York: Springer; 1983.
  • Frankowska H, Rampazzo F. Relaxation of control systems under state constraints. SIAM J Control Optim. 1999;37(4):1291–1309. doi: 10.1137/S0363012997331019
  • Ekeland I, Temam R. Convex analysis and variational problems. Philadelphia: Society for Industrial and Applied Mathematics; 1999.
  • Rockafellar RT. Integrals which are convex functionals. Pacific J Math. 1968;24(3):525–539. doi: 10.2140/pjm
  • Peng ZY, Peng JW, Long XJ, et al. On the stability of solutions for semi-infinite vector optimization problems. J Global Optim. 2018;70(1):55–69. doi: 10.1007/s10898-017-0553-6
  • Tammer C. Multiobjective optimal control problems. In: Schmidt WH, editor. Variational calculus, optimal control and applications. Basel: Birkhäuser Verlag; 1998. p. 97–106. (International Series of Numerical Mathematics; 124).
  • Kuratowski K. Topology: volume I. New York: Academic Press; 1966.
  • Aubin JP, Frankowska H. Set-valued analysis. Boston: Birkhäuser; 2009.
  • Chang SSL. An extension of Ascoli's theorem and its applications to the theory of optimal control. Trans Amer Math Soc. 1965;115:445–470. doi: 10.2307/1994280
  • Appell J, Banas J, Díaz NJM. Bounded variation and around. Boston: Walter de Gruyter; 2013.
  • Jovanovič MV. On strong quasiconvex functions and boundedness of level sets. Optimization. 1989;20(2):163–165. doi: 10.1080/02331938908843426
  • Schmidt EG. The ‘bang-bang’ principle for the time-optimal problem in boundary control of the heat equation. SIAM J Control Optim. 1980;18(2):101–107. doi: 10.1137/0318008
  • Maurer H, Osmolovskii N. Applications to regular and bang-bang control. Philadelphia: SIAM; 2012.
  • Sussmann HJ. A bang-bang theorem with bounds on the number of switchings. SIAM J Control Optim. 1979;17(5):629–651. doi: 10.1137/0317045
  • Ellis G. Control system design guide: using your computer to understand and diagnose feedback controllers. Amsterdam: Elsevier; 2012.
  • Kurdila AJ, Zabarankin M. Convex functional analysis. Boston: Birkhäuser; 2006.
  • Kien BT. On the lower semicontinuity of optimal solution sets. Optimization. 2005;54(2):123–130. doi: 10.1080/02331930412331330379
  • Jovanovič MV. A note on strongly convex and quasiconvex functions. Math Notes. 1996;60(5):584–585. doi: 10.1007/BF02309176

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.