321
Views
4
CrossRef citations to date
0
Altmetric
Special issue-: the third Cross-Strait Workshop on Fluid Mechanics (CSWFM 2020)

Numerical simulation and experimental verification of the airfoil electrothermal deicing system performance

, , , &
Pages 608-617 | Received 07 Apr 2020, Accepted 09 Apr 2021, Published online: 07 Jul 2021

References

  • Buschhorn, S. T., S. S. Kessler, N. Lachmann, J. K. Gavin, G. Thomas, and B. L. Wardle. 2013. “Electrothermal Icing Protection of Aerosurfaces Using Conductive Polymer Nanocomposites.” In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, Massachusetts, 8-11 April 2013: 6: 1729–1736. USA: AIAA.
  • Cao, Y., W. Tan, and Z. Wu. 2018. “Aircraft Icing: An Ongoing Threat to Aviation Safety.” Aerospace Science and Technology 75: 353–385. doi:10.1016/j.ast.2017.12.028.
  • Chang, S. Z., S. X. Ai, X. H. Huo, and X. G. Yuan. 2008. “Improved Simulation of Electrothermal De-Icing System.” Journal of Aerospace Power 23 (10): 1753–1758. doi:10.13224/j.cnki.jasp.2008.10.004.
  • Lehnhäuser, T., and M. Schäfer. 2002. “Improved Linear Interpolation Practice for Finite‐Volume Schemes on Complex Grids.” International Journal for Numerical Methods in Fluids 38 (7): 625–645. doi:10.1002/fld.232.
  • Matsubayashi, T., M. Tenjimbayashi, K. Manabe, M. Komine, W. Navarrini, and S. Shiratori. 2016. “Integrated Anti-Icing Property of Super-Repellency and Electrothermogenesis Exhibited by PEDOT: PSS/Cyanoacrylate Composite Nanoparticles.” ACS Applied Materials & Interfaces 8 (36): 24212–24220. doi:10.1021/acsami.6b07844.
  • Mohseni, M., and A. Amirfazli. 2013. “A Novel Electro-Thermal Anti-Icing System for Fiber-Reinforced Polymer Composite Airfoils.” Cold Regions Science and Technology 87: 47–58. doi:10.1016/j.coldregions.2012.12.003.
  • Moulinec, C., and P. Wesseling. 2000. “Colocated Schemes for the Incompressible Navier–Stokes Equations on Non‐Smooth Grids for Two‐Dimensional Problems.” International Journal for Numerical Methods in Fluids 32 (3): 349–364. doi:10.1002/(SICI)1097-0363(20000215)32:3<349::AID-FLD942>3.0.CO;2-L.
  • Mu, Z., G. Lin, X. Shen, X. Bu, and Y. Zhou. 2018. “Numerical Simulation of Unsteady Conjugate Heat Transfer of Electrothermal Deicing Process.” International Journal of Aerospace Engineering 2018: 1–16. doi:10.1155/2018/5362541.
  • Reid, T., G. S. Baruzzi, and W. G. Habashi. 2012. “FENSAP-ICE: Unsteady Conjugate Heat Transfer Simulation of Electrothermal De-Icing.” Journal of Aircraft 49 (4): 1101–1109. doi:10.2514/1.C031607.
  • Shen, X., H. Wang, G. Lin, X. Bu, and D. Wen. 2020. “Unsteady Simulation of Aircraft Electro-Thermal Deicing Process with Temperature-Based Method.” Proceedings of the Institution of Mechanical Engineers. Part G, Journal of Aerospace Engineering 234 (2): 388–400. doi:10.1177/0954410019866066.
  • Tao, W. 2001. Numerical Heat Transfer. Shaanxi, China: Xi’an Jiaotong University.
  • Voller, V. R., and C. Prakash. 1987. “A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems.” International Journal of Heat and Mass Transfer 30 (8): 1709–1719. doi:10.1016/0017-9310(87)90317-6.
  • Voller, V. R., and C. R. Swaminathan. 1991. “Eral Source-Based Method for Solidification Phase Change.” Numerical Heat Transfer, Part B Fundamentals 19 (2): 175–189. doi:10.1080/10407799108944962.
  • Wright, W. B., K. J. Dewitt, and T. G. Keith Jr. 1991. “Numerical Simulation of Icing, Deicing, and Shedding.” In 29th Aerospace Sciences Meeting, Reno, Nevada, 7-10 January 1991: 665–679. USA: AIAA.
  • Xiao, C., G. Lin, Y. Gui, and J. Xiao. 2012. “Research on the Thermal Coupling Characteristics of Electrothermal Deicing and Its Effect on Ice Layer.” Experimental Fluid Mechanics 26 (2): 23–28.
  • Xiao, C., K. Yu, Y. Gui, and Q. Tang. 2018. “Analysis of Parameteric Influence on Phase Change Heat Transfer Characteristics of 1-D and 2-D Electrothermal Deicing.” Journal of Aerospace Power 33 (4): 882–893. doi:10.13224/j.cnki.jasp.2018.04.014.
  • Yao, X., B. G. Falzon, S. C. Hawkins, and S. Tsantzalis. 2018. “Aligned Carbon Nanotube Webs Embedded in A Composite Laminate: A Route Towards A Highly Tunable Electro-Thermal System.” Carbon 129: 486–494. doi:10.1016/j.carbon.2017.12.045.
  • Yaslik, A. D., K. J. De Witt, and T. G. Keith Jr. 1992. “Further Developments in Three-Dimensional Numerical Simulation of Electrothermal De-Icing Systems.” In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6-9 January 1992: 528-end page. USA: AIAA.
  • Zhao, Y. 2012. “Unsteady Numerical Simulation and Ground Tests of a TailplaneElectrothermal De-Icing System.” In Applied Mechanics and Materials 217–219: 2458–2462.
  • Zhou, W., Y. Liu, H. Hu, H. Hu, and X. Meng. 2018. “Utilization of Thermal Effect Induced by Plasma Generation for Aircraft Icing Mitigation.” AIAA Journal 56 (3): 1–8. doi:10.2514/1.J056358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.