94
Views
0
CrossRef citations to date
0
Altmetric
Civil Engineering

Improvement on engineering properties and volumetric stability of alkali-activated slag-based composite cementitious material with rice husk ash and magnesium oxide

, &
Pages 179-191 | Received 15 May 2023, Accepted 25 Oct 2023, Published online: 08 Jan 2024

References

  • Atiş, C. D., C. Bilim, Ö. Çelik, and O. Karahan. 2009. “Influence of Activator on the Strength and Drying Shrinkage of Alkali-Activated Slag Mortar.” Construction and Building Materials 23 (1): 548–555. doi:10.1016/j.conbuildmat.2007.10.011.
  • Cartwright, C., F. Rajabipour, and A. Radlińska. 2015. “Shrinkage Characteristics of Alkali-Activated Slag Cements.” Journal of Materials in Civil Engineering 27 (7): B4014007. doi:10.1061/(asce)mt.1943-5533.0001058.
  • Christopher, F., A. Bolatito, and S. Ahmed. 2017. “Structure and Properties of Mortar and Concrete with Rice Husk Ash as Partial Replacement of Ordinary Portland Cement – a Review.” International Journal of Sustainable Built Environment 6 (2): 675–692. doi:10.1016/j.ijsbe.2017.07.004.
  • Das, S. K., A. Adediran, C. R. Kaze, S. M. Mustakim, and N. Leklou. 2022. “Production, Characteristics, and Utilization of Rice Husk Ash in Alkali Activated Materials: An Overview of Fresh and Hardened State Properties.” Construction and Building Materials 345: 128341. doi:10.1016/j.conbuildmat.2022.128341.
  • Das, S. K., J. Mishra, S. K. Singh, S. M. Mustakim, A. Patel, S. K. Das, and U. Behera. 2020. “Characterization and Utilization of Rice Husk Ash (Rha) in Fly Ash – Blast Furnace Slag Based Geopolymer Concrete for Sustainable Future.” Materials Today: Proceedings 33 (8): 5162–5167. doi:10.1016/j.matpr.2020.02.870.
  • Feng, S., J. Zhu, R. Wang, Z. Qu, L. Song, and H. Wang. 2022. “The Influence of Cao and Mgo on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Powder.” Materials 15 (17): 6128. doi:10.3390/ma15176128.
  • Ghaly, A. E., and K. G. Mansaray. 1999. “Comparative Study on the Thermal Degradation of Rice Husks in Various Atmospheres.” Energy Sources 21 (10): 867–881. doi:10.1080/00908319950014254.
  • Habeeb, G. A., and H. B. Mahmud. 2010. “Study on Properties of Rice Husk Ash and Its Use as Cement Replacement Material.” Materials Research 13 (2): 185–190. doi:10.1590/S1516-14392010000200011.
  • Hamidian, M., A. Shariati, M. M. Arabnejad Khanouki, H. Sinaei, A. Toghroli, and K. Nouri. 2012. “Application of Schmidt Rebound Hammer and Ultrasonic Pulse Velocity Techniques for Structural Health Monitoring.” Scientific Research and Essays 7 (21): 1997–2001. doi:10.5897/SRE11.1387.
  • He, J., W. Zheng, W. Bai, T. Hu, J. He, and X. Song. 2021. “Effect of Reactive MgO on Hydration and Properties of Alkali-Activated Slag Pastes with Different Activators.” Construction and Building Materials 271: 121608. doi:10.1016/j.conbuildmat.2020.121608.
  • Hwang, C. L., and T. P. Huynh. 2015. “Effect of Alkali-Activator and Rice Husk Ash Content on Strength Development of Fly Ash and Residual Rice Husk Ash-Based Geopolymers.” Construction and Building Materials 101: 1–9. doi:10.1016/j.conbuildmat.2015.10.025.
  • Hwang, C. L., D. H. Vo, V. A. Tran, and M. D. Yehualaw. 2018. “Effect of High Mgo Content on the Performance of Alkali-Activated Fine Slag Under Water and Air Curing Conditions.” Construction and Building Materials 186: 503–513. doi:10.1016/j.conbuildmat.2018.07.129.
  • Jain, V., G. Sancheti, and B. Jain. 2022. “Non-Destructive Test Analysis on Concrete with Rice Husk Ash and Crushed Stone Additives.” Materials Today: Proceedings 60: 622–626. doi:10.1016/j.matpr.2022.02.128.
  • Jennings, H. M. 2008. “Reply to the Discussion by J.J. Beaudoin and R. Alizeadab of the Paper “Refinements to Colloid Model of C-S-H in Cement: CM-II “By H.M. Jennings.” Cement and Concrete Research 38 (7): 1028–1030. doi:10.1016/j.cemconres.2008.03.002.
  • Jin, F., and A. Al-Tabbaa. 2015. “Strength and Drying Shrinkage of Slag Paste Activated by Sodium Carbonate and Reactive Mgo.” Construction and Building Materials 81: 58–65. doi:10.1016/j.conbuildmat.2015.01.082.
  • Jin, F., K. Gu, A. Abdollahzadeh, and A. Al-Tabbaa. 2015. “Effects of Different Reactive Mgos on the Hydration of Mgo-Activated Ggbs Paste.” Journal of Materials in Civil Engineering 27 (7): B4014001. doi:10.1061/(asce)mt.1943-5533.0001009.
  • Jin, F., K. Gu, and A. Al-Tabbaa. 2014. “Strength and Drying Shrinkage of Reactive MgO Modified Alkali-Activated Slag Paste.” Construction and Building Materials 51: 395–404. doi:10.1016/j.conbuildmat.2013.10.081.
  • Kuan, C. Y., K. H. Yuen, and M. T. Liong. 2012. “Physical, Chemical and Physicochemical Characterization of Rice Husk.” British Food Journal 114 (6): 853–867. doi:10.1108/00070701211234372.
  • Lee, N. K., J. G. Jang, and H. K. Lee. 2014. “Shrinkage Characteristics of Alkali-Activated Fly Ash/Slag Paste and Mortar at Early Ages.” Cement and Concrete Composites 53: 239–248. doi:10.1016/j.cemconcomp.2014.07.007.
  • Ma, H., X. Li, X. Zheng, X. Niu, and Y. Fang. 2022. “Effect of Active Mgo on the Hydration Kinetics Characteristics and Microstructures of Alkali-Activated Fly Ash-Slag Materials.” Construction and Building Materials 361: 129677. doi:10.1016/j.conbuildmat.2022.129677.
  • Mastali, M., P. Kinnunen, A. Dalvand, R. Mohammadi Firouz, and M. Illikainen. 2018. “Drying Shrinkage in Alkali-Activated Binders – a Critical Review.” Construction and Building Materials 190: 533–550. doi:10.1016/j.conbuildmat.2018.09.125.
  • Ma, H., H. Zhu, H. Chen, Y. Ni, X. Xu, and Q. Huo. 2020. “Shrinkage-Reducing Measures and Mechanisms Analysis for Alkali-Activated Coal Gangue-Slag Mortar at Room Temperature.” Construction and Building Materials 252: 119001. doi:10.1016/j.conbuildmat.2020.119001.
  • Nagataki, S., and H. Gomi. 1998. “Expansive Admixtures (Mainly Ettringite).” Cement and Concrete Composites 20 (2–3): 163–170. doi:10.1016/S0958-9465(97)00064-4.
  • Prasanna Venkatesan, R., and K. C. Pazhani. 2016. “Strength and Durability Properties of Geopolymer Concrete Made with Ground Granulated Blast Furnace Slag and Black Rice Husk Ash.” KSCE Journal of Civil Engineering 20 (6): 2384–23891. doi:10.1007/s12205-015-0564-0.
  • Soltani, N., A. Bahrami, M. I. Pech-Canul, and L. A. González. 2015. “Review on the Physicochemical Treatments of Rice Husk for Production of Advanced Materials.” Chemical Engineering Journal 264: 899–935. doi:10.1016/j.cej.2014.11.056.
  • Sturm, P., G. J. G. Gluth, H. J. H. Brouwers, and H. C. Kühne. 2016. “Synthesizing One-Part Geopolymers from Rice Husk Ash.” Construction and Building Materials 124: 961–966. doi:10.1016/j.conbuildmat.2016.08.017.
  • Tian, Z., X. Liu, Z. Zhang, K. Zhang, and X. Tang. 2021. “Potential Using of Water-Soluble Polymer Latex Modified Greener Road Geopolymeric Grouts: Its Preparation, Characterization and Mechanism.” Construction and Building Materials 273: 121757. doi:10.1016/j.conbuildmat.2020.121757.
  • Ugheoke, B. I., and O. Mamat. 2012. “A Critical Assessment and New Research Directions of Rice Husk Silica Processing Methods and Properties.” Maejo International Journal of Science and Technology 6 (3): 430–448. doi:10.14456/mijst.2012.31.
  • Vlaev, L. T., I. G. Markovska, and L. A. Lyubchev. 2003. “Non-Isothermal Kinetics of Pyrolysis of Rice Husk.” Thermochimica acta 406 (1–2): 1–7. doi:10.1016/S0040-6031(03)00222-3.
  • Xu, J., A. H. Kang, Z. G. Wu, P. Xiao, B. Li, and Y. M. Lu. 2021. “Research on the Formulation and Properties of a High-Performance Geopolymer Grouting Material Based on Slag and Fly Ash.” KSCE Journal of Civil Engineering 25 (9): 3437–3447. doi:10.1007/s12205-021-1699-9.
  • Xu, R., H. Wang, Q. Zha, and J. Lin. 2023. “Improving the Carbonation Resistance of Alkali-Activated Slag Mortars with Different Additives: Experimental Evaluations.” Construction and Building Materials 366: 130197. doi:10.1016/j.conbuildmat.2022.130197.
  • Yang, Y., Z. Chen, W. Feng, Y. Nong, M. Yao, and Y. Tang. 2021. “Shrinkage Compensation Design and Mechanism of Geopolymer Pastes.” Construction and Building Materials 299: 123916. doi:10.1016/j.conbuildmat.2021.123916.
  • Ye, H., and A. Radlińska. 2016. “Shrinkage Mechanisms of Alkali-Activated Slag.” Cement and Concrete Research 88: 126–135. doi:10.1016/j.cemconres.2016.07.001.
  • Ye, H., and A. Radlińska. 2017. “Carbonation-Induced Volume Change in Alkali-Activated Slag.” Construction and Building Materials 144: 635–644. doi:10.1016/j.conbuildmat.2017.03.238.
  • Zheng, W., J. He, Y. Tong, J. He, X. Song, and G. Sang. 2022a. “Investigation of Effects of Reactive Mgo on Autogenous and Drying Shrinkage of Near-Neutral Salt Activated Slag Cement.” Ceramics International 48 (4): 5518–5526. doi:10.1016/j.ceramint.2021.11.096.
  • Zheng, W., J. He, Y. Wu, X. Song, and G. Sang. 2022b. “Effect of Reactive Mgo on the Shrinkage Property of Alkali-Activated Slag Cement.” Materials Reports 36 (10): 21040175–21040178. doi:10.11896/cldb.21040175.
  • Zhu, H., G. Liang, Z. Zhang, Q. Wu, and J. Du. 2019. “Partial Replacement of Metakaolin with Thermally Treated Rice Husk Ash in Metakaolin-Based Geopolymer.” Construction and Building Materials 221: 527–538. doi:10.1016/j.conbuildmat.2019.06.112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.